Suppr超能文献

基于模型的美国结核分枝杆菌基因型聚类分析显示,加利福尼亚、佛罗里达、纽约和德克萨斯州的传播存在高度异质性和州际差异。

Model-based Analysis of Tuberculosis Genotype Clusters in the United States Reveals High Degree of Heterogeneity in Transmission and State-level Differences Across California, Florida, New York, and Texas.

机构信息

Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.

Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.

出版信息

Clin Infect Dis. 2022 Oct 12;75(8):1433-1441. doi: 10.1093/cid/ciac121.

Abstract

BACKGROUND

Reductions in tuberculosis (TB) transmission have been instrumental in lowering TB incidence in the United States. Sustaining and augmenting these reductions are key public health priorities.

METHODS

We fit mechanistic transmission models to distributions of genotype clusters of TB cases reported to the Centers for Disease Control and Prevention during 2012-2016 in the United States and separately in California, Florida, New York, and Texas. We estimated the mean number of secondary cases generated per infectious case (R0) and individual-level heterogeneity in R0 at state and national levels and assessed how different definitions of clustering affected these estimates.

RESULTS

In clusters of genotypically linked TB cases that occurred within a state over a 5-year period (reference scenario), the estimated R0 was 0.29 (95% confidence interval [CI], .28-.31) in the United States. Transmission was highly heterogeneous; 0.24% of simulated cases with individual R0 >10 generated 19% of all recent secondary transmissions. R0 estimate was 0.16 (95% CI, .15-.17) when a cluster was defined as cases occurring within the same county over a 3-year period. Transmission varied across states: estimated R0s were 0.34 (95% CI, .3-.4) in California, 0.28 (95% CI, .24-.36) in Florida, 0.19 (95% CI, .15-.27) in New York, and 0.38 (95% CI, .33-.46) in Texas.

CONCLUSIONS

TB transmission in the United States is characterized by pronounced heterogeneity at the individual and state levels. Improving detection of transmission clusters through incorporation of whole-genome sequencing and identifying the drivers of this heterogeneity will be essential to reducing TB transmission.

摘要

背景

在美国,结核病(TB)传播的减少对降低 TB 发病率起到了重要作用。维持和加强这些减少是公共卫生的关键优先事项。

方法

我们使用机械传播模型来拟合 2012-2016 年期间向美国疾病控制与预防中心报告的结核病病例的基因型聚类分布,分别在加利福尼亚州、佛罗里达州、纽约州和德克萨斯州进行拟合。我们估计了每个传染性病例(R0)产生的继发性病例数的平均值,以及在州和国家层面上 R0 的个体差异,并评估了不同的聚类定义如何影响这些估计值。

结果

在 5 年内发生在一个州内的基因型相关结核病病例聚类中(参考情景),美国的估计 R0 为 0.29(95%置信区间[CI],0.28-0.31)。传播具有高度异质性;个体 R0 值大于 10 的模拟病例中 0.24%的病例产生了所有近期继发性传播的 19%。当一个聚类被定义为在 3 年内发生在同一县内的病例时,R0 的估计值为 0.16(95% CI,0.15-0.17)。各州之间的传播情况有所不同:加利福尼亚州的估计 R0 为 0.34(95% CI,0.3-0.4),佛罗里达州为 0.28(95% CI,0.24-0.36),纽约州为 0.19(95% CI,0.15-0.27),德克萨斯州为 0.38(95% CI,0.33-0.46)。

结论

美国的结核病传播在个体和州层面上具有明显的异质性。通过整合全基因组测序来提高对传播聚类的检测,并确定这种异质性的驱动因素,对于减少结核病传播至关重要。

相似文献

引用本文的文献

4
Patterns of TB transmission in the United States, 2011-2017.2011 - 2017年美国结核病传播模式
Int J Tuberc Lung Dis. 2024 Mar 1;28(3):154-156. doi: 10.5588/ijtld.23.0422.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验