Suppr超能文献

基于可穿戴数据收集的双相抑郁症预测方案

The Proposition for Bipolar Depression Forecasting Based on Wearable Data Collection.

作者信息

Llamocca Pavel, López Victoria, Čukić Milena

机构信息

Computer Architecture Department, Complutense University of Madrid, Madrid, Spain.

Quantitative Methods Department, Cunef University, Madrid, Spain.

出版信息

Front Physiol. 2022 Jan 25;12:777137. doi: 10.3389/fphys.2021.777137. eCollection 2021.

Abstract

Bipolar depression is treated wrongly as unipolar depression, on average, for 8 years. It is shown that this mismedication affects the occurrence of a manic episode and aggravates the overall condition of patients with bipolar depression. Significant effort was invested in early detection of depression and forecasting of responses to certain therapeutic approaches using a combination of features extracted from standard and online testing, wearables monitoring, and machine learning. In the case of unipolar depression, this approach yielded evidence that this data-based computational psychiatry approach would be helpful in clinical practice. Following a similar pipeline, we examined the usefulness of this approach to foresee a manic episode in bipolar depression, so that clinicians and family of the patient can help patient navigate through the time of crisis. Our projects combined the results from self-reported daily questionnaires, the data obtained from smart watches, and the data from regular reports from standard psychiatric interviews to feed various machine learning models to predict a crisis in bipolar depression. Contrary to satisfactory predictions in unipolar depression, we found that bipolar depression, having more complex dynamics, requires personalized approach. A previous work on physiological complexity (complex variability) suggests that an inclusion of electrophysiological data, properly quantified, might lead to better solutions, as shown in other projects of our group concerning unipolar depression. Here, we make a comparison of previously performed research in a methodological sense, revisiting and additionally interpreting our own results showing that the methodological approach to mania forecasting may be modified to provide an accurate prediction in bipolar depression.

摘要

双相抑郁症被误诊为单相抑郁症的平均时间为8年。研究表明,这种用药不当会影响躁狂发作的发生,并加重双相抑郁症患者的整体病情。人们投入了大量精力,通过结合从标准测试和在线测试、可穿戴设备监测以及机器学习中提取的特征,来早期检测抑郁症并预测对某些治疗方法的反应。对于单相抑郁症,这种方法已得到证据表明,这种基于数据的计算精神病学方法在临床实践中会有所帮助。按照类似的流程,我们研究了这种方法对预测双相抑郁症躁狂发作的有用性,以便临床医生和患者家属能够帮助患者度过危机时刻。我们的项目结合了自我报告的每日问卷结果、从智能手表获得的数据以及标准精神科访谈的定期报告数据,来为各种机器学习模型提供数据,以预测双相抑郁症的危机。与单相抑郁症的满意预测结果相反,我们发现双相抑郁症具有更复杂的动态变化,需要个性化的方法。先前一项关于生理复杂性(复杂变异性)的研究表明,纳入经过适当量化的电生理数据可能会带来更好的解决方案,正如我们小组关于单相抑郁症的其他项目所显示的那样。在此,我们从方法论的角度对先前进行的研究进行比较,重新审视并进一步解释我们自己的结果,表明可以修改躁狂预测的方法论方法,以在双相抑郁症中提供准确的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4858/8821957/fe315224cb5a/fphys-12-777137-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验