Coley R Yates, Boggs Jennifer M, Beck Arne, Simon Gregory E
Kaiser Permanente Washington Health Research Institutes, Seattle, WA, USA.
Department of Biostatistics, University of Washington, Seattle, WA, USA.
J Affect Disord Rep. 2021 Dec;6:100198. doi: 10.1016/j.jadr.2021.100198. Epub 2021 Jul 24.
Predictive analytics with electronic health record (EHR) data holds promise for improving outcomes of psychiatric care. This study evaluated models for predicting outcomes of psychotherapy for depression in a clinical practice setting. EHR data from two large integrated health systems (Kaiser Permanente Colorado and Washington) included 5,554 new psychotherapy episodes with a baseline Patient Health Questionnaire (PHQ-9) score ≥ 10 and a follow-up PHQ-9 14-180 days after treatment initiation. Baseline predictors included demographics and diagnostic, medication, and encounter history. Prediction models for two outcomes-follow-up PHQ-9 score and treatment response (≥ 50% PHQ-9 reduction)-were trained in a random sample of 70% of episodes and validated in the remaining 30%. Two methods were used for modeling: generalized linear regression models with variable selection and random forests. Sensitivity analyses considered alternate predictor, outcome, and model specifications. Predictions of follow-up PHQ-9 scores poorly estimated observed outcomes (mean squared error = 31 for linear regression, 40 for random forest). Predictions of treatment response had low discrimination (AUC = 0.57 for logistic regression, 0.61 for random forest), low classification accuracy, and poor calibration. Sensitivity analyses showed similar results. We note that prediction model performance may vary for settings with different care or EHR documentation practices. In conclusion, prediction models did not accurately predict depression treatment outcomes despite using rich EHR data and advanced analytic techniques. Health systems should proceed cautiously when considering prediction models for psychiatric outcomes using baseline intake information. Transparent research should be conducted to evaluate performance of any model intended for clinical use.
利用电子健康记录(EHR)数据进行预测分析有望改善精神科护理的效果。本研究评估了在临床实践环境中预测抑郁症心理治疗效果的模型。来自两个大型综合医疗系统(科罗拉多州和华盛顿州的凯撒医疗集团)的EHR数据包括5554例新的心理治疗疗程,这些疗程的基线患者健康问卷(PHQ-9)评分≥10,且在治疗开始后14 - 180天进行了随访PHQ-9评估。基线预测因素包括人口统计学信息、诊断、用药及就诊史。针对两个结果(随访PHQ-9评分和治疗反应(PHQ-9降低≥50%))的预测模型在70%的疗程随机样本中进行训练,并在其余30%中进行验证。使用了两种建模方法:带变量选择的广义线性回归模型和随机森林。敏感性分析考虑了替代预测因素、结果及模型规格。随访PHQ-9评分的预测对观察到的结果估计不佳(线性回归的均方误差 = 31,随机森林为40)。治疗反应的预测具有低区分度(逻辑回归的AUC = 0.57,随机森林为0.61)、低分类准确率和较差的校准度。敏感性分析显示了类似结果。我们注意到,对于具有不同护理或EHR文档记录实践的环境,预测模型的性能可能会有所不同。总之,尽管使用了丰富的EHR数据和先进的分析技术,但预测模型并未准确预测抑郁症治疗结果。医疗系统在考虑使用基线入院信息的精神科结果预测模型时应谨慎行事。应进行透明的研究以评估任何用于临床的模型的性能。