Suppr超能文献

从智能手机自我评估中预测双相情感障碍的情绪:分层贝叶斯方法。

Forecasting Mood in Bipolar Disorder From Smartphone Self-assessments: Hierarchical Bayesian Approach.

机构信息

Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark.

Copenhagen Affective Disorder Research Center, Psychiatric Center Copenhagen, Rigshospitalet, Copenhagen, Denmark.

出版信息

JMIR Mhealth Uhealth. 2020 Apr 1;8(4):e15028. doi: 10.2196/15028.

Abstract

BACKGROUND

Bipolar disorder is a prevalent mental health condition that is imposing significant burden on society. Accurate forecasting of symptom scores can be used to improve disease monitoring, enable early intervention, and eventually help prevent costly hospitalizations. Although several studies have examined the use of smartphone data to detect mood, only few studies deal with forecasting mood for one or more days.

OBJECTIVE

This study aimed to examine the feasibility of forecasting daily subjective mood scores based on daily self-assessments collected from patients with bipolar disorder via a smartphone-based system in a randomized clinical trial.

METHODS

We applied hierarchical Bayesian regression models, a multi-task learning method, to account for individual differences and forecast mood for up to seven days based on 15,975 smartphone self-assessments from 84 patients with bipolar disorder participating in a randomized clinical trial. We reported the results of two time-series cross-validation 1-day forecast experiments corresponding to two different real-world scenarios and compared the outcomes with commonly used baseline methods. We then applied the best model to evaluate a 7-day forecast.

RESULTS

The best performing model used a history of 4 days of self-assessment to predict future mood scores with historical mood being the most important predictor variable. The proposed hierarchical Bayesian regression model outperformed pooled and separate models in a 1-day forecast time-series cross-validation experiment and achieved the predicted metrics, R=0.51 and root mean squared error of 0.32, for mood scores on a scale of -3 to 3. When increasing the forecast horizon, forecast errors also increased and the forecast regressed toward the mean of data distribution.

CONCLUSIONS

Our proposed method can forecast mood for several days with low error compared with common baseline methods. The applicability of a mood forecast in the clinical treatment of bipolar disorder has also been discussed.

摘要

背景

双相情感障碍是一种普遍存在的精神健康状况,给社会带来了巨大的负担。准确预测症状评分可用于改善疾病监测,实现早期干预,最终有助于预防昂贵的住院治疗。尽管已有多项研究探讨了使用智能手机数据来检测情绪,但只有少数研究涉及预测一天或多天的情绪。

目的

本研究旨在检验基于智能手机系统从双相情感障碍患者中收集的日常自我评估数据预测每日主观情绪评分的可行性,该研究在一项随机临床试验中进行。

方法

我们应用分层贝叶斯回归模型(一种多任务学习方法),考虑个体差异,并根据 84 名参与随机临床试验的双相情感障碍患者的 15975 次智能手机自我评估,预测未来最多 7 天的情绪。我们报告了对应两种不同实际情况的两个 1 天时间序列交叉验证预测实验的结果,并将结果与常用的基线方法进行了比较。然后,我们应用最佳模型评估 7 天预测。

结果

表现最佳的模型使用 4 天的自我评估历史来预测未来的情绪评分,其中历史情绪是最重要的预测变量。在 1 天时间序列交叉验证预测实验中,提出的分层贝叶斯回归模型优于综合模型和独立模型,对-3 到 3 范围内的情绪评分,达到了预测指标 R=0.51 和均方根误差 0.32。当增加预测时程时,预测误差也会增加,且预测会回归到数据分布的均值。

结论

与常用的基线方法相比,我们提出的方法可以以较低的误差预测多日的情绪。还讨论了情绪预测在双相情感障碍临床治疗中的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c32/7367518/c5f18dd3d4a2/mhealth_v8i4e15028_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验