Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia in Katowice, Sosnowiec, Poland; Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Cracow.
Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.
Geospat Health. 2022 Jan 14;17(s1). doi: 10.4081/gh.2022.1013.
Spatiotemporal modelling of infectious diseases such as coronavirus disease 2019 (COVID-19) involves using a variety of epidemiological metrics such as regional proportion of cases and/or regional positivity rates. Although observing changes of these indices over time is critical to estimate the regional disease burden, the dynamical properties of these measures, as well as crossrelationships, are usually not systematically given or explained. Here we provide a spatiotemporal framework composed of six commonly used and newly constructed epidemiological metrics and conduct a case study evaluation. We introduce a refined risk estimate that is biased neither by variation in population size nor by the spatial heterogeneity of testing. In particular, the proposed methodology would be useful for unbiased identification of time periods with elevated COVID-19 risk without sensitivity to spatial heterogeneity of neither population nor testing coverage.We offer a case study in Poland that shows improvement over the bias of currently used methods. Our results also provide insights regarding regional prioritisation of testing and the consequences of potential synchronisation of epidemics between regions. The approach should apply to other infectious diseases and other geographical areas.
传染病(如 2019 年冠状病毒病(COVID-19))的时空建模涉及使用各种流行病学指标,如病例的区域比例和/或区域阳性率。虽然观察这些指标随时间的变化对于估计区域疾病负担至关重要,但这些措施的动态特性以及相互关系通常没有系统地给出或解释。在这里,我们提供了一个由六个常用和新构建的流行病学指标组成的时空框架,并进行了案例研究评估。我们引入了一种经过改进的风险估计方法,该方法既不受人口规模变化的影响,也不受检测空间异质性的影响。特别是,所提出的方法将有助于在不受人口和检测覆盖的空间异质性影响的情况下,对风险增加的时间段进行无偏识别。我们在波兰进行了案例研究,结果表明该方法优于当前使用的方法的偏差。我们的结果还提供了有关区域检测优先级以及地区间疫情潜在同步的后果的见解。该方法应适用于其他传染病和其他地理区域。