Hu Bisong, Ning Pan, Qiu Jingyu, Tao Vincent, Devlin Adam Thomas, Chen Haiying, Wang Jinfeng, Lin Hui
School of Geography and Environment, Jiangxi Normal University, No. 99, Ziyang Rd., Nanchang 330022, Jiangxi, China; State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11A, Datun Rd., Chaoyang District, Beijing 100101, China.
School of Geography and Environment, Jiangxi Normal University, No. 99, Ziyang Rd., Nanchang 330022, Jiangxi, China.
Int J Infect Dis. 2021 Sep;110:247-257. doi: 10.1016/j.ijid.2021.04.021. Epub 2021 Apr 20.
The novel coronavirus (COVID-19) epidemic is reaching its final phase in China. The epidemic data are available for a complete assessment of epidemiological parameters in all regions and time periods.
This study aims to present a spatiotemporal epidemic model based on spatially stratified heterogeneity (SSH) to simulate the epidemic spread. A susceptible-exposed/latent-infected-removed (SEIR) model was constructed for each SSH-identified stratum (each administrative city) to estimate the spatiotemporal epidemiological parameters of the outbreak.
We estimated that the mean latent and removed periods were 5.40 and 2.13 days, respectively. There was an average of 1.72 latent or infected persons per 10,000 Wuhan travelers to other locations until January 20th, 2020. The space-time basic reproduction number (R) estimates indicate an initial value between 2 and 3.5 in most cities on this date. The mean period for R estimates to decrease to 80%, and 50% of initial values in cities were an average of 14.73 and 19.62 days, respectively.
Our model estimates the complete spatiotemporal epidemiological characteristics of the outbreak in a space-time domain. These findings will help enhance a comprehensive understanding of the outbreak and inform the strategies of prevention and control in other countries worldwide.
新型冠状病毒(COVID - 19)疫情在中国正进入最后阶段。疫情数据可用于全面评估所有地区和时间段的流行病学参数。
本研究旨在提出一种基于空间分层异质性(SSH)的时空疫情模型,以模拟疫情传播。为每个SSH识别的层次(每个行政城市)构建了一个易感 - 暴露/潜伏 - 感染 - 清除(SEIR)模型,以估计疫情爆发的时空流行病学参数。
我们估计平均潜伏期和清除期分别为5.40天和2.13天。截至2020年1月20日,每10000名从武汉前往其他地方的旅行者中平均有1.72名潜伏或感染者。时空基本再生数(R)估计表明,在该日期大多数城市的初始值在2至3.5之间。R估计值降至初始值的80%和50%时,城市中的平均时间分别为14.73天和19.62天。
我们的模型在时空域中估计了疫情爆发的完整时空流行病学特征。这些发现将有助于增强对疫情爆发的全面理解,并为全球其他国家的预防和控制策略提供参考。