Huang Ming, Deng Bangwei, Zhao Xiaoli, Zhang Zheye, Li Fei, Li Kanglu, Cui Zhihao, Kong Lingxuan, Lu Jianmei, Dong Fan, Zhang Lili, Chen Peng
School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore.
Research Center for Environmental Science & Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.
ACS Nano. 2022 Feb 22;16(2):2110-2119. doi: 10.1021/acsnano.1c07746. Epub 2022 Feb 11.
Although various single-atom catalysts have been designed, atomically engineering their coordination environment remains a great challenge. Herein, a one-pot template-sacrificing pyrolysis approach is developed to synthesize well-defined Ni-N-O catalytic sites on highly porous graphitic carbon for electrocatalytic CO reduction to CO with high Faradaic efficiency (maximum of 97.2%) in a wide potential window (-0.56 to -1.06 V vs RHE) and with high stability. In-depth experimental and theoretical studies reveal that the axial Ni-O coordination introduces asymmetry to the catalytic center, leading to lower Gibbs free energy for the rate-limiting step, strengthened binding with *COOH, and a weaker association with *CO. The present results demonstrate the successful atomic-level coordination environment engineering of high-surface-area porous graphitic carbon-supported Ni single-atom catalysts (SACs), and the demonstrated method can be applied to synthesize an array of SACs (metal-N-O) for various catalysis applications.
尽管已经设计了各种单原子催化剂,但对其配位环境进行原子级工程设计仍然是一个巨大的挑战。在此,开发了一种一锅法模板牺牲热解方法,在高度多孔的石墨碳上合成定义明确的Ni-N-O催化位点,用于电催化将CO还原为CO,在宽电位窗口(相对于可逆氢电极,-0.56至-1.06 V)内具有高法拉第效率(最高97.2%)且具有高稳定性。深入的实验和理论研究表明,轴向Ni-O配位给催化中心引入了不对称性,导致限速步骤的吉布斯自由能降低,与COOH的结合增强,与CO的缔合减弱。目前的结果证明了在高表面积多孔石墨碳负载的Ni单原子催化剂(SACs)上成功进行了原子级配位环境工程,并且所展示的方法可用于合成一系列用于各种催化应用的SACs(金属-N-O)。