Sun Boya, Lu Qiongqiong, Chen Kaixuan, Zheng Wenhao, Liao Zhongquan, Lopatik Nikolaj, Li Dongqi, Hantusch Martin, Zhou Shengqiang, Wang Hai I, Sofer Zdeněk, Brunner Eike, Zschech Ehrenfried, Bonn Mischa, Dronskowski Richard, Mikhailova Daria, Liu Qinglei, Zhang Di, Yu Minghao, Feng Xinliang
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062, Dresden, Germany.
Adv Mater. 2022 Apr;34(15):e2108682. doi: 10.1002/adma.202108682. Epub 2022 Mar 3.
2D transition metal carbides and/or nitrides, so-called MXenes, are noted as ideal fast-charging cation-intercalation electrode materials, which nevertheless suffer from limited specific capacities. Herein, it is reported that constructing redox-active phosphorus-oxygen terminals can be an attractive strategy for Nb C MXenes to remarkably boost their specific capacities for ultrafast Na storage. As revealed, redox-active terminals with a stoichiometric formula of PO - display a metaphosphate-like configuration with each P atom sustaining three PO bonds and one PO dangling bond. Compared with conventional O-terminals, metaphosphate-like terminals empower Nb C (denoted PO -Nb C ) with considerably enriched carrier density (fourfold), improved conductivity (12.3-fold at 300 K), additional redox-active sites, boosted Nb redox depth, nondeclined Na -diffusion capability, and buffered internal stress during Na intercalation/de-intercalation. Consequently, compared with O-terminated Nb C , PO -Nb C exhibits a doubled Na -storage capacity (221.0 mAh g ), well-retained fast-charging capability (4.9 min at 80% capacity retention), significantly promoted cycle life (nondegraded capacity over 2000 cycles), and justified feasibility for assembling energy-power-balanced Na-ion capacitors. This study unveils that the molecular-level design of MXene terminals provides opportunities for developing simultaneously high-capacity and fast-charging electrodes, alleviating the energy-power tradeoff typical for energy-storage devices.
二维过渡金属碳化物和/或氮化物,即所谓的MXenes,被认为是理想的快速充电阳离子插层电极材料,然而其比容量有限。在此,据报道,构建具有氧化还原活性的磷氧端基对于Nb₂C MXenes而言可能是一种有吸引力的策略,可显著提高其超快储钠的比容量。结果表明,化学计量式为PO₂-的氧化还原活性端基呈现出类偏磷酸盐构型,每个P原子维持三个P—O键和一个P═O悬空键。与传统的氧端基相比,类偏磷酸盐端基使Nb₂C(表示为PO₂-Nb₂C)具有显著更高的载流子密度(四倍)、更高的电导率(300 K时为12.3倍)、额外的氧化还原活性位点、增强的Nb氧化还原深度、不降低的Na⁺扩散能力以及在Na⁺嵌入/脱嵌过程中缓冲的内应力。因此,与氧端基Nb₂C相比,PO₂-Nb₂C表现出两倍的储钠容量(221.0 mAh g⁻¹)、良好保持的快速充电能力(在80%容量保持率下为4.9分钟)、显著提高的循环寿命(超过2000次循环容量不降解)以及组装能量-功率平衡的钠离子电容器的合理可行性。这项研究揭示,MXene端基的分子水平设计为开发同时具有高容量和快速充电能力的电极提供了机会,缓解了储能器件典型的能量-功率权衡问题。