Garin Clément M, Nadkarni Nachiket A, Pépin Jérémy, Flament Julien, Dhenain Marc
Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, 18 Route du Panorama, F-92265 Fontenay-aux-Roses, France; Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, 18 Route du Panorama, F-92265 Fontenay-aux-Roses, France.
Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, 18 Route du Panorama, F-92265 Fontenay-aux-Roses, France; Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, 18 Route du Panorama, F-92265 Fontenay-aux-Roses, France.
Neuroimage. 2022 May 1;251:118984. doi: 10.1016/j.neuroimage.2022.118984. Epub 2022 Feb 8.
Glutamate is the amino acid with the highest cerebral concentration. It plays a central role in brain metabolism. It is also the principal excitatory neurotransmitter in the brain and is involved in multiple cognitive functions. Alterations of the glutamatergic system may contribute to the pathophysiology of many neurological disorders. For example, changes of glutamate availability are reported in rodents and humans during Alzheimer's and Huntington's diseases, epilepsy as well as during aging. Most studies evaluating cerebral glutamate have used invasive or spectroscopy approaches focusing on specific brain areas. Chemical Exchange Saturation Transfer imaging of glutamate (gluCEST) is a recently developed imaging technique that can be used to study relative changes in glutamate distribution in the entire brain with higher sensitivity and at higher resolution than previous techniques. It thus has strong potential clinical applications to assess glutamate changes in the brain. High field is a key condition to perform gluCEST images with a meaningful signal to noise ratio. Thus, even if some studies started to evaluate gluCEST in humans, most studies focused on rodent models that can be imaged at high magnetic field. In particular, systematic characterization of gluCEST contrast distribution throughout the whole brain has never been performed in humans or non-human primates. Here, we characterized for the first time the distribution of the gluCEST contrast in the whole brain and in large-scale networks of mouse lemur primates at 11.7 Tesla. Because of its small size, this primate can be imaged in high magnetic field systems. It is widely studied as a model of cerebral aging or Alzheimer's disease. We observed high gluCEST contrast in cerebral regions such as the nucleus accumbens, septum, basal forebrain, cortical areas 24 and 25. Age-related alterations of this biomarker were detected in the nucleus accumbens, septum, basal forebrain, globus pallidus, hypophysis, cortical areas 24, 21, 6 and in olfactory bulbs. An age-related gluCEST contrast decrease was also detected in specific neuronal networks, such as fronto-temporal and evaluative limbic networks. These results outline regional differences of gluCEST contrast and strengthen its potential to provide new biomarkers of cerebral function in primates.
谷氨酸是大脑中浓度最高的氨基酸。它在脑代谢中起核心作用。它也是大脑中主要的兴奋性神经递质,参与多种认知功能。谷氨酸能系统的改变可能导致许多神经系统疾病的病理生理过程。例如,在啮齿动物和人类的阿尔茨海默病、亨廷顿病、癫痫以及衰老过程中,均有谷氨酸可用性变化的报道。大多数评估脑谷氨酸的研究都采用侵入性或光谱学方法,聚焦于特定脑区。谷氨酸的化学交换饱和转移成像(gluCEST)是一种最近开发的成像技术,与以往技术相比,它能够以更高的灵敏度和分辨率研究全脑谷氨酸分布的相对变化。因此,它在评估脑内谷氨酸变化方面具有很强的潜在临床应用价值。高场强是获得具有有意义信噪比的gluCEST图像的关键条件。因此,尽管一些研究已开始在人体中评估gluCEST,但大多数研究集中在可在高磁场下成像的啮齿动物模型上。特别是,从未在人类或非人类灵长类动物中对全脑的gluCEST对比分布进行系统表征。在此,我们首次在11.7特斯拉磁场下对小鼠狐猴灵长类动物的全脑和大规模网络中的gluCEST对比分布进行了表征。由于其体型小,这种灵长类动物可在高磁场系统中成像。它作为脑衰老或阿尔茨海默病的模型被广泛研究。我们在伏隔核、隔区、基底前脑、24区和25区等脑区观察到较高的gluCEST对比。在伏隔核、隔区、基底前脑、苍白球、垂体、24区、21区、6区以及嗅球中检测到该生物标志物与年龄相关的变化。在特定神经元网络,如额颞叶和评估性边缘网络中也检测到与年龄相关的gluCEST对比降低。这些结果概述了gluCEST对比的区域差异,并强化了其提供灵长类动物脑功能新生物标志物的潜力。