Department of Radiology, Perelman School of Medicine, Center for Advanced Metabolic Imaging in Precision Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Alzheimers Dement. 2024 Oct;20(10):7124-7137. doi: 10.1002/alz.14190. Epub 2024 Sep 11.
Regional glucose hypometabolism resulting in glutamate loss has been shown as one of the characteristics of Alzheimer's disease (AD). Because the impact of AD varies between the sexes, we utilized glutamate-weighted chemical exchange saturation transfer (GluCEST) magnetic resonance imaging (MRI) for high-resolution spatial mapping of cerebral glutamate and investigated subregional changes in a sex-specific manner.
Eight-month-old male and female AD mice harboring mutant amyloid precursor protein (APP: n = 36) and wild-type (WT: n = 39) mice underwent GluCEST MRI, followed by proton magnetic resonance spectroscopy (H-MRS) in hippocampus and thalamus/hypothalamus using 9.4T preclinical MR scanner.
GluCEST measurements revealed significant (p ≤ 0.02) glutamate loss in the entorhinal cortex (% change ± standard error: 8.73 ± 2.12%), hippocampus (11.29 ± 2.41%), and hippocampal fimbriae (19.15 ± 2.95%) of male AD mice. A similar loss of hippocampal glutamate in male AD mice (11.22 ± 2.33%; p = 0.01) was also observed in H-MRS.
GluCEST MRI detected glutamate reductions in the fimbria and entorhinal cortex of male AD mice, which was not reported previously. Resilience in female AD mice against these changes indicates an intact status of cerebral energy metabolism.
Glutamate levels were monitored in different brain regions of early-stage Alzheimer's disease (AD) and wild-type male and female mice using glutamate-weighted chemical exchange saturation transfer (GluCEST) magnetic resonance imaging (MRI). Male AD mice exhibited significant glutamate loss in the hippocampus, entorhinal cortex, and the fimbriae of the hippocampus. Interestingly, female AD mice did not have any glutamate loss in any brain region and should be investigated further to find the probable cause. These findings demonstrate previously unreported sex-specific glutamate changes in hippocampal sub-regions using high-resolution GluCEST MRI.
区域葡萄糖代谢低下导致谷氨酸丢失已被证明是阿尔茨海默病(AD)的特征之一。由于 AD 的影响在性别之间存在差异,我们利用谷氨酸加权化学交换饱和传递(GluCEST)磁共振成像(MRI)对大脑谷氨酸进行高分辨率空间映射,并以性别特异性的方式研究了亚区的变化。
8 月龄雄性和雌性 AD 小鼠(携带突变淀粉样前体蛋白(APP):n = 36)和野生型(WT)小鼠(n = 39)接受 GluCEST MRI 检查,然后在 9.4T 临床前磁共振扫描仪上使用质子磁共振波谱(H-MRS)测量海马体和丘脑/下丘脑的谷氨酸。
GluCEST 测量结果显示,雄性 AD 小鼠的内嗅皮层(%变化 ± 标准误差:8.73 ± 2.12%)、海马体(11.29 ± 2.41%)和海马体的齿状回(19.15 ± 2.95%)中谷氨酸明显丢失。雄性 AD 小鼠的海马体谷氨酸也有类似的丢失(11.22 ± 2.33%;p = 0.01),这也在 H-MRS 中得到了证实。
GluCEST MRI 检测到雄性 AD 小鼠的齿状回和内嗅皮层的谷氨酸减少,这是以前没有报道过的。雌性 AD 小鼠对这些变化的抵抗力表明其大脑能量代谢处于完整状态。
使用谷氨酸加权化学交换饱和传递(GluCEST)磁共振成像(MRI)监测不同脑区早期阿尔茨海默病(AD)和野生型雄性和雌性小鼠的谷氨酸水平。雄性 AD 小鼠的海马体、内嗅皮层和海马体的齿状回的谷氨酸明显丢失。有趣的是,雌性 AD 小鼠的任何脑区都没有谷氨酸丢失,需要进一步研究以找到可能的原因。这些发现利用高分辨率的 GluCEST MRI 显示了以前未报道的海马亚区的性别特异性谷氨酸变化。