Suppr超能文献

定制MIL-101(Fe)衍生物的晶面以提高中低温下SCR反应的活性。

Tailor the crystal planes of MIL-101(Fe) derivatives to enhance the activity of SCR reaction at medium and low temperature.

作者信息

Qin Guozhen, Zheng Jianfeng, Li Yifan, Yang Yatao, Liu Xingmin, Han Xiaojin, Huang Zhanggen

机构信息

State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 P. R. China; University of Chinese Academy of Sciences Beijing 10049 P. R. China.

State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 P. R. China.

出版信息

J Colloid Interface Sci. 2022 Jun;615:432-444. doi: 10.1016/j.jcis.2022.01.147. Epub 2022 Jan 25.

Abstract

Mainly exposed crystal facets and controllable morphology play a key role in the final performance of the preparation of specific nanomaterials. In the present study, a metal-organic framework pyrolysis method without adding solvent modifiers was developed. By adding CO in the calcination atmosphere to change atmosphere ratio, FeO nanostructures are exposed with different crystal planes and evaluated their performance in NH-SCR reaction. This study proves that SCR catalytic activity of FeO nanocrystals is dependent on morphology and crystal facet. Compared with materials exposed (100), catalysts with more (111) show stronger deNO performance. The preferential exposure of FeO (111) crystal facets increases the concentration of adsorbed oxygen on the catalyst, showing higher surface acidity, and enhances the interaction among NO, O and catalyst, which is conducive to SCR reaction. This is supported by DFT calculations. The results present a great application prospect in preparing nanomaterials with specific crystal structures to effectively treat pollutants.

摘要

主要暴露的晶面和可控的形貌在特定纳米材料制备的最终性能中起着关键作用。在本研究中,开发了一种不添加溶剂改性剂的金属有机框架热解方法。通过在煅烧气氛中添加CO来改变气氛比例,使FeO纳米结构暴露不同的晶面,并评估它们在NH-SCR反应中的性能。本研究证明FeO纳米晶体的SCR催化活性取决于形貌和晶面。与暴露(100)面的材料相比,具有更多(111)面的催化剂表现出更强的脱硝性能。FeO(111)晶面的优先暴露增加了催化剂上吸附氧的浓度,表现出更高的表面酸度,并增强了NO、O与催化剂之间的相互作用,有利于SCR反应。这得到了密度泛函理论计算的支持。该结果在制备具有特定晶体结构的纳米材料以有效处理污染物方面具有广阔的应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验