Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 370 77 Göttingen, Germany.
Department of Physical Chemistry, University of Chemistry and Technology in Prague, Technická 5, 166 28 Prague, Czech Republic.
Nucleic Acids Res. 2022 Feb 28;50(4):2258-2269. doi: 10.1093/nar/gkac038.
The ribosome is a fundamental biomolecular complex that synthesizes proteins in cells. Nascent proteins emerge from the ribosome through a tunnel, where they may interact with the tunnel walls or small molecules such as antibiotics. These interactions can cause translational arrest with notable physiological consequences. Here, we studied the arrest caused by the regulatory peptide VemP, which is known to form α-helices inside the ribosome tunnel near the peptidyl transferase center under specific conditions. We used all-atom molecular dynamics simulations of the entire ribosome and circular dichroism spectroscopy to study the driving forces of helix formation and how VemP causes the translational arrest. To that aim, we compared VemP dynamics in the ribosome tunnel with its dynamics in solution. We show that the VemP peptide has a low helical propensity in water and that the propensity is higher in mixtures of water and trifluorethanol. We propose that helix formation within the ribosome is driven by the interactions of VemP with the tunnel and that a part of VemP acts as an anchor. This anchor might slow down VemP progression through the tunnel enabling α-helix formation, which causes the elongation arrest.
核糖体是一种基本的生物分子复合物,它在细胞中合成蛋白质。新生蛋白质通过一个隧道从核糖体中出来,在那里它们可能与隧道壁或小分子(如抗生素)相互作用。这些相互作用可能导致翻译暂停,产生显著的生理后果。在这里,我们研究了由调节肽 VemP 引起的暂停,已知在特定条件下,VemP 在核糖体隧道中靠近肽基转移酶中心的位置形成 α-螺旋。我们使用核糖体的全原子分子动力学模拟和圆二色性光谱来研究螺旋形成的驱动力以及 VemP 如何导致翻译暂停。为此,我们比较了 VemP 在核糖体隧道中的动力学与其在溶液中的动力学。我们表明,VemP 肽在水中的螺旋倾向较低,而在水和三氟乙醇的混合物中的螺旋倾向较高。我们提出,核糖体内的螺旋形成是由 VemP 与隧道的相互作用驱动的,并且 VemP 的一部分充当锚。这个锚可能会减缓 VemP 通过隧道的前进速度,从而促进 α-螺旋的形成,导致延伸暂停。