Suppr超能文献

核糖体出口通道内Kv1.3跨膜片段螺旋形成的决定因素

Determinants of Helix Formation for a Kv1.3 Transmembrane Segment inside the Ribosome Exit Tunnel.

作者信息

Tu LiWei, Deutsch Carol

机构信息

Department of Physiology, University of Pennsylvania, PA 19104-6085, Philadelphia, USA.

Department of Physiology, University of Pennsylvania, PA 19104-6085, Philadelphia, USA.

出版信息

J Mol Biol. 2017 Jun 2;429(11):1722-1732. doi: 10.1016/j.jmb.2017.04.022. Epub 2017 May 4.

Abstract

Proteins begin to fold in the ribosome, and misfolding has pathological consequences. Among the earliest folding events in biogenesis is the formation of a helix, an elementary structure that is ubiquitously present and required for correct protein folding in all proteomes. The determinants underlying helix formation in the confined space of the ribosome exit tunnel are relatively unknown. We chose the second transmembrane segment, S2, of a voltage-gated potassium channel, Kv1.3, as a model to probe this issue. Since the N terminus of S2 is initially in an extended conformation in the folding vestibule of the ribosome yet ultimately emerges at the exit port as a helix, S2 is ideally suited for delineating sequential events and folding determinants of helix formation inside the ribosome. We show that S2's extended N terminus inside the tunnel is converted into a helix by a single, distant mutation in the nascent peptide. This transition depends on nascent peptide sequence at specific tunnel locations. Co-translational secondary folding of nascent chains inside the ribosome has profound physiological consequences that bear on correct membrane insertion, tertiary folding, oligomerization, and biochemical modification of the newborn protein during biogenesis.

摘要

蛋白质在核糖体中开始折叠,错误折叠会产生病理后果。生物合成中最早的折叠事件之一是螺旋的形成,螺旋是一种基本结构,普遍存在于所有蛋白质组中,并且是正确蛋白质折叠所必需的。在核糖体出口通道的有限空间内,螺旋形成的决定因素相对未知。我们选择电压门控钾通道Kv1.3的第二个跨膜片段S2作为模型来探究这个问题。由于S2的N端最初在核糖体的折叠前庭中处于伸展构象,但最终在出口处形成螺旋,因此S2非常适合描绘核糖体内部螺旋形成的连续事件和折叠决定因素。我们表明,隧道内S2的伸展N端通过新生肽中的单个远距离突变转化为螺旋。这种转变取决于特定隧道位置的新生肽序列。核糖体内部新生链的共翻译二级折叠具有深远的生理后果,这与新生蛋白质在生物合成过程中的正确膜插入、三级折叠、寡聚化和生化修饰有关。

相似文献

4
Tertiary interactions within the ribosomal exit tunnel.核糖体出口通道内的三级相互作用。
Nat Struct Mol Biol. 2009 Apr;16(4):405-11. doi: 10.1038/nsmb.1571. Epub 2009 Mar 8.
10
Small protein domains fold inside the ribosome exit tunnel.小蛋白质结构域在核糖体出口通道内折叠。
FEBS Lett. 2016 Mar;590(5):655-60. doi: 10.1002/1873-3468.12098. Epub 2016 Feb 25.

引用本文的文献

2
The cellular pathways that maintain the quality control and transport of diverse potassium channels.维持多种钾离子通道质量控制和运输的细胞途径。
Biochim Biophys Acta Gene Regul Mech. 2023 Mar;1866(1):194908. doi: 10.1016/j.bbagrm.2023.194908. Epub 2023 Jan 10.
8
Unraveling co-translational protein folding: Concepts and methods.解析共翻译折叠蛋白质:概念与方法。
Methods. 2018 Mar 15;137:71-81. doi: 10.1016/j.ymeth.2017.11.007. Epub 2017 Dec 6.

本文引用的文献

1
Small protein domains fold inside the ribosome exit tunnel.小蛋白质结构域在核糖体出口通道内折叠。
FEBS Lett. 2016 Mar;590(5):655-60. doi: 10.1002/1873-3468.12098. Epub 2016 Feb 25.
2
3
Structure of a human translation termination complex.人翻译终止复合物的结构。
Nucleic Acids Res. 2015 Oct 15;43(18):8615-26. doi: 10.1093/nar/gkv909. Epub 2015 Sep 17.
4
Cotranslational Protein Folding inside the Ribosome Exit Tunnel.核糖体出口通道内的共翻译蛋白质折叠
Cell Rep. 2015 Sep 8;12(10):1533-40. doi: 10.1016/j.celrep.2015.07.065. Epub 2015 Aug 28.
9
Co-translational mechanisms of protein maturation.蛋白质成熟的共翻译机制。
Curr Opin Struct Biol. 2014 Feb;24:24-33. doi: 10.1016/j.sbi.2013.11.004. Epub 2013 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验