Suppr超能文献

一种基于机器学习的用于区分流域内人类管理土地覆盖物蒸散的自然和人为贡献的框架。

A framework for separating natural and anthropogenic contributions to evapotranspiration of human-managed land covers in watersheds based on machine learning.

作者信息

Zeng Hongwei, Elnashar Abdelrazek, Wu Bingfang, Zhang Miao, Zhu Weiwei, Tian Fuyou, Ma Zonghan

机构信息

State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.

State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Department of Natural Resources, Faculty of African Postgraduate Studies, Cairo University, Giza 12613, Egypt.

出版信息

Sci Total Environ. 2022 Jun 1;823:153726. doi: 10.1016/j.scitotenv.2022.153726. Epub 2022 Feb 9.

Abstract

Actual EvapoTranspiration (ET) represents the water consumption in watersheds; distinguishing between natural and anthropogenic contributions to ET is essential for water conservation and ecological sustainability. This study proposed a framework to separate the contribution of natural and anthropogenic factors to ET of human-managed land cover types using the Random Forest Regressor (RFR). The steps include: (1) classify land cover into natural and human-managed land covers and then divide ET, meteorological, topographical, and geographical data into two parts corresponding to natural and human-managed land cover types; (2) construct a natural ET (ET) prediction model using natural land cover types of ET, and the corresponding meteorological, topographical and geographical factors; (3) the constructed ET prediction model is used to predict the ET of human-managed land cover types using the corresponding meteorological, topographical and geographical data as inputs, and (4) derive the anthropogenic ET (ET) by subtracting the natural ET from the total ET (ET) for human-managed land cover types. Take 2017 as an example, ET and ET for rainfed agriculture, mosaic agriculture, irrigated agriculture, and settlement in Colorado, Blue Nile, and Heihe Basin were separated by the proposed framework, with R and NSE of predicted ET above 0.95 and RB within 1% for all three basins. In the semi-arid Colorado River Basin and arid Heihe Basin, human activities on human-managed land cover types tended to increase ET higher than humid Blue Nile Basin. The anthropogenic contribution to total water consumption is approaching 53.68%, 66.47%, and 6.14% for the four human-managed land cover types in Colorado River Basin, Heihe Bain and Blue Nile Basin, respectively. The framework provides strong support for the disturbance of water resources by different anthropogenic activities at the basin scale and the accurate estimation of the impact of human activities on ET to help achieve water-related sustainable development goals.

摘要

实际蒸散量(ET)代表流域内的水资源消耗;区分自然和人为因素对ET的贡献对于水资源保护和生态可持续性至关重要。本研究提出了一个框架,利用随机森林回归器(RFR)来分离自然和人为因素对人类管理的土地覆盖类型ET的贡献。步骤包括:(1)将土地覆盖分为自然和人类管理的土地覆盖,然后将ET、气象、地形和地理数据分为与自然和人类管理的土地覆盖类型相对应的两部分;(2)利用自然土地覆盖类型的ET以及相应的气象、地形和地理因素构建自然ET(ET)预测模型;(3)将构建的ET预测模型用于以相应的气象、地形和地理数据为输入来预测人类管理的土地覆盖类型的ET,以及(4)通过从人类管理的土地覆盖类型的总ET(ET)中减去自然ET来得出人为ET(ET)。以2017年为例,通过所提出的框架分离了科罗拉多河、青尼罗河和黑河流域雨养农业、镶嵌农业、灌溉农业和定居点的ET和ET,所有三个流域预测ET的R和NSE均高于95%,RB在1%以内。在半干旱的科罗拉多河流域和干旱的黑河流域,人类管理的土地覆盖类型上的人类活动往往使ET增加得比湿润的青尼罗河流域更高。科罗拉多河流域、黑河流域和青尼罗河流域四种人类管理的土地覆盖类型对总水资源消耗的人为贡献分别接近53.68%、66.47%和6.14%。该框架为流域尺度上不同人为活动对水资源的干扰以及准确估计人类活动对ET的影响提供了有力支持,以帮助实现与水相关的可持续发展目标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验