Suppr超能文献

基于数据的临床和非临床幻听者幻听特征的语言分析。

A data-driven linguistic characterization of hallucinated voices in clinical and non-clinical voice-hearers.

机构信息

Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, the Netherlands.

Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, the Netherlands; Department of Psychiatry, University Medical Center Groningen, University of Groningen, the Netherlands.

出版信息

Schizophr Res. 2022 Mar;241:210-217. doi: 10.1016/j.schres.2022.01.055. Epub 2022 Feb 9.

Abstract

BACKGROUND

Auditory verbal hallucinations (AVHs) are heterogeneous regarding phenomenology and etiology. This has led to the proposal of AVHs subtypes. Distinguishing AVHs subtypes can inform AVHs neurocognitive models and also have implications for clinical practice. A scarcely studied source of heterogeneity relates to the AVHs linguistic characteristics. Therefore, in this study we investigate whether linguistic features distinguish AVHs subtypes, and whether linguistic AVH-subtypes are associated with phenomenology and voice-hearers' clinical status.

METHODS

Twenty-one clinical and nineteen non-clinical voice-hearers participated in this study. Participants were instructed to repeat verbatim their AVHs just after experiencing them. AVH-repetitions were audio-recorded and transcribed. AVHs phenomenology was assessed using the Auditory Hallucinations Rating Scale of the Psychotic Symptom Rating Scales. Hierarchical clustering analyses without a priori group dichotomization were performed using quantitative measures of sixteen linguistic features to distinguish sets of AVHs.

RESULTS

A two-AVHs-cluster solution best partitioned the data. AVHs-clusters significantly differed in linguistic features (p < .001); AVHs phenomenology (p < .001); and distribution of clinical voice-hearers (p < .001). The "expanded-AVHs" cluster was characterized by more determiners, more prepositions, longer utterances (all p < .01), and mainly contained non-clinical voice-hearers. The "compact-AVHs" cluster had fewer determiners and prepositions, shorter utterances (all p < .01), more negative content, higher degree of negativity (both p < .05), and predominantly came from clinical voice-hearers.

DISCUSSION

Two voice-speech clusters were recognized, differing in syntactic-grammatical complexity and negative phenomenology. Our results suggest clinical voice-hearers often hear negative, "compact-voices", understandable under Broca's right hemisphere homologue and memory-based mechanisms. Conversely, non-clinical voice-hearers experience "expanded-voices", better accounted by inner speech AVHs models.

摘要

背景

听觉言语幻觉(AVHs)在现象学和病因学方面存在异质性。这导致了 AVHs 亚型的提出。区分 AVHs 亚型可以为 AVHs 的神经认知模型提供信息,也对临床实践具有重要意义。一个研究较少的异质性来源与 AVHs 的语言特征有关。因此,在这项研究中,我们调查了语言特征是否能区分 AVHs 亚型,以及语言 AVH 亚型是否与现象学和声音使用者的临床状况有关。

方法

21 名临床声音使用者和 19 名非临床声音使用者参加了这项研究。参与者被要求在体验完 AVHs 后立即逐字重复他们的 AVHs。AVH 重复被录音并转录。使用精神病症状评定量表中的听觉幻觉评定量表评估 AVH 的现象学。使用十六种语言特征的定量测量值进行无先验分组的分层聚类分析,以区分 AVHs 集。

结果

两簇 AVHs 最佳地分割了数据。AVHs 聚类在语言特征(p<0.001)、AVHs 现象学(p<0.001)和临床声音使用者的分布(p<0.001)方面存在显著差异。“扩展型 AVHs”聚类的特征是有更多的限定词、更多的介词、更长的话语(均 p<0.01),主要由非临床声音使用者组成。“紧凑型 AVHs”聚类的限定词和介词较少,话语较短(均 p<0.01),内容更消极,负性程度更高(均 p<0.05),主要来自临床声音使用者。

讨论

识别出了两个语音集群,它们在句法-语法复杂性和消极现象学方面存在差异。我们的结果表明,临床声音使用者经常听到消极的、“紧凑的声音”,这可以用布罗卡氏右半球同化物和基于记忆的机制来解释。相反,非临床声音使用者体验到的“扩展型声音”,可以更好地用内在言语 AVHs 模型来解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验