Nolte Philip C, Midtgaard Kaare, Miles Jon W, Tanghe Kira K, Provencher Matthew T
Steadman Philippon Research Institute, Vail, Colorado; BG Trauma Center Ludwigshafen at the University of Heidelberg, Clinic for Trauma and Orthopaedic Surgery, Ludwigshafen, Germany.
Steadman Philippon Research Institute, Vail, Colorado; Division of Orthopaedic Surgery, Oslo University Hospital, Oslo, Norway; Norwegian Armed Forces Joint Medical Services, Forsvarsvegen, Norway.
J Hand Surg Am. 2023 Jun;48(6):621.e1-621.e7. doi: 10.1016/j.jhsa.2021.12.007. Epub 2022 Feb 10.
The purpose of this study was to compare, using a cadaveric model, the biomechanical properties of headless compression screws (HCSs) and HCSs augmented with a buttress plate (BP) in capitellar fractures.
Twenty pairs of fresh-frozen humeri (mean age, 46.3 years; range, 33-58 years) were used. The soft tissue was removed, and a Dubberley type IA capitellar fracture was created. One specimen in each pair was randomly assigned to receive either two 2.5-mm HCSs (HCS group) or two 2.5-mm HCSs augmented with an anterior 2.4-mm BP (HCS + BP group). This resulted in a similar distribution of the left and right humeri between the groups. Cyclic loading was performed, and displacement of the capitellum at 50, 100, 250, 500, 1,000, and 2,000 cycles was assessed using a motion capture system. This was followed by load-to-failure testing, wherein the load at a displacement of 1 and 2 mm was recorded. Failure was defined as 2-mm displacement.
During cyclic loading, there were no significant differences in the displacement between the HCS and HCS + BP groups at any of the assessed cycles. During load-to-failure testing, no significant strength differences were observed in the load at 1-mm displacement between the HCS (mean: 449.8 N, 95% CI: 283.6-616.0) and HCS + BP groups (mean: 606.2 N, 95% CI: 476.4-736.0). However, a significantly smaller load resulted in a 2-mm displacement of the fragment in the HCS group (mean: 668.8 N, 95% CI: 414.3-923.2) compared with the HCS + BP group (mean: 977.5 N, 95% CI: 794.1-1,161.0).
Anterior, low-profile buttress plating in addition to HCSs results in a significantly higher load to failure compared with HCSs alone in a biomechanical Dubberley type IA capitellar fracture model.
The addition of an anterior BP may be considered to improve initial stability in select cases such as osteoporotic patients or when the posterolateral column is frail.
本研究的目的是使用尸体模型比较无头加压螺钉(HCS)和在肱骨小头骨折中使用支撑钢板(BP)增强的HCS的生物力学特性。
使用20对新鲜冷冻的肱骨(平均年龄46.3岁;范围33 - 58岁)。去除软组织,制造Dubberley IA型肱骨小头骨折。每对中的一个标本随机分配接受两枚2.5毫米的HCS(HCS组)或两枚用2.4毫米前路BP增强的2.5毫米HCS(HCS + BP组)。这使得两组之间左右肱骨分布相似。进行循环加载,并使用运动捕捉系统评估在50、100、250、500、1000和2000次循环时肱骨小头的位移。随后进行破坏载荷测试,记录位移为1毫米和2毫米时的载荷。破坏定义为位移2毫米。
在循环加载过程中,在任何评估的循环中,HCS组和HCS + BP组之间的位移均无显著差异。在破坏载荷测试中,HCS组(平均值:449.8 N,95%可信区间:283.6 - 616.0)和HCS + BP组(平均值:606.2 N,95%可信区间:476.4 - 736.0)在位移1毫米时的载荷未观察到显著强度差异。然而,与HCS + BP组(平均值:977.5 N,95%可信区间:794.1 - 1161.0)相比,HCS组中导致骨折块位移2毫米的载荷明显更小(平均值:668.8 N,95%可信区间:414.3 - 923.2)。
在生物力学Dubberley IA型肱骨小头骨折模型中,除HCS外使用前路低轮廓支撑钢板与单独使用HCS相比,导致显著更高的破坏载荷。
在某些情况下,如骨质疏松患者或后外侧柱脆弱时,可考虑增加前路BP以提高初始稳定性。