Suppr超能文献

逆微分求积法:数学公式与误差分析

Inverse differential quadrature method: mathematical formulation and error analysis.

作者信息

Ojo Saheed O, Trinh Luan C, Khalid Hasan M, Weaver Paul M

机构信息

Bernal Institute, School of Engineering, University of Limerick, V94 T9PX, Castletroy, Ireland.

出版信息

Proc Math Phys Eng Sci. 2021 Apr;477(2248):20200815. doi: 10.1098/rspa.2020.0815. Epub 2021 Apr 21.

Abstract

Engineering systems are typically governed by systems of high-order differential equations which require efficient numerical methods to provide reliable solutions, subject to imposed constraints. The conventional approach by direct approximation of system variables can potentially incur considerable error due to high sensitivity of high-order numerical differentiation to noise, thus necessitating improved techniques which can better satisfy the requirements of numerical accuracy desirable in solution of high-order systems. To this end, a novel inverse differential quadrature method (iDQM) is proposed for approximation of engineering systems. A detailed formulation of iDQM based on integration and DQM inversion is developed separately for approximation of arbitrary low-order functions from higher derivatives. Error formulation is further developed to evaluate the performance of the proposed method, whereas the accuracy through convergence, robustness and numerical stability is presented through articulation of two unique concepts of the iDQM scheme, known as Mixed iDQM and Full iDQM. By benchmarking iDQM solutions of high-order differential equations of linear and nonlinear systems drawn from heat transfer and mechanics problems against exact and DQM solutions, it is demonstrated that iDQM approximation is robust to furnish accurate solutions without losing computational efficiency, and offer superior numerical stability over DQM solutions.

摘要

工程系统通常由高阶微分方程组控制,这些方程组需要高效的数值方法来在给定约束条件下提供可靠的解。通过直接逼近系统变量的传统方法可能会由于高阶数值微分对噪声的高敏感性而产生相当大的误差,因此需要改进技术,以更好地满足高阶系统求解中所需的数值精度要求。为此,提出了一种新颖的逆微分求积法(iDQM)来逼近工程系统。基于积分和DQM反演的iDQM详细公式被分别开发出来,用于从高阶导数逼近任意低阶函数。进一步推导了误差公式以评估所提方法的性能,而通过阐述iDQM方案的两个独特概念,即混合iDQM和全iDQM,展示了其在收敛性、鲁棒性和数值稳定性方面的精度。通过将从传热和力学问题中提取的线性和非线性系统的高阶微分方程的iDQM解与精确解和DQM解进行基准测试,结果表明iDQM逼近在不损失计算效率的情况下能够稳健地提供精确解,并且比DQM解具有更好的数值稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1fc/8300657/957e33b6de04/rspa20200815f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验