Notot Vincent, Walravens Willem, Berthe Maxime, Peric Nemanja, Addad Ahmed, Wallart Xavier, Delerue Christophe, Hens Zeger, Grandidier Bruno, Biadala Louis
Université Lille, CNRS, Centrale Lille, Université Polytechnique Hauts-de-France, JUNIA-ISEN, UMR 8520 - IEMN, F-59000 Lille, France.
Physics and Chemistry of Nanostructures, Ghent University, 9000 Ghent, Belgium.
ACS Nano. 2022 Feb 22;16(2):3081-3091. doi: 10.1021/acsnano.1c10596. Epub 2022 Feb 14.
Oriented attachment of colloidal quantum dots allows the growth of two-dimensional crystals by design, which could have striking electronic properties upon progress on manipulating their conductivity. Here, we explore the origin of doping in square and epitaxially fused PbSe quantum dot superlattices with low-temperature scanning tunneling microscopy and spectroscopy. Probing the density of states of numerous individual quantum dots reveals an electronic coupling between the hole ground states of the quantum dots. Moreover, a small amount of quantum dots shows a reproducible deep level in the band gap, which is not caused by structural defects in the connections but arises from unpassivated sites at the {111} facets. Based on semiconductor statistics, these distinct defective quantum dots, randomly distributed in the superlattice, trap electrons, releasing a concentration of free holes, which is intimately related to the interdot electronic coupling. They act as acceptor quantum dots in the host quantum dot lattice, mimicking the role of dopant atoms in a semiconductor crystal.
胶体量子点的定向附着使得二维晶体能够通过设计生长,在操纵其电导率方面取得进展时,二维晶体可能具有显著的电子特性。在此,我们利用低温扫描隧道显微镜和光谱学探究方形和外延融合的PbSe量子点超晶格中的掺杂起源。探测众多单个量子点的态密度揭示了量子点的空穴基态之间的电子耦合。此外,少量量子点在带隙中显示出可重现的深能级,这不是由连接中的结构缺陷引起的,而是源于{111}面处未钝化的位点。基于半导体统计,这些随机分布在超晶格中的独特缺陷量子点捕获电子,释放出一定浓度的自由空穴,这与量子点间的电子耦合密切相关。它们在主体量子点晶格中充当受主量子点,模仿半导体晶体中掺杂原子的作用。