Suppr超能文献

耦合胶体量子点分子

Coupled Colloidal Quantum Dot Molecules.

作者信息

Koley Somnath, Cui Jiabin, Panfil Yossef E, Banin Uri

机构信息

Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.

The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.

出版信息

Acc Chem Res. 2021 Mar 2;54(5):1178-1188. doi: 10.1021/acs.accounts.0c00691. Epub 2021 Jan 18.

Abstract

ConspectusElectronic coupling and hence hybridization of atoms serves as the basis for the rich properties for the endless library of naturally occurring molecules. Colloidal quantum dots (CQDs) manifesting quantum strong confinement possess atomic-like characteristics with and electronic levels, which popularized the notion of CQDs as artificial atoms. Continuing this analogy, when two atoms are close enough to form a molecule so that their orbitals start overlapping, the orbitals energies start to split into bonding and antibonding states made out of hybridized orbitals. The same concept is also applicable for two fused core-shell nanocrystals in close proximity. Their band edge states, which dictate the emitted photon energy, start to hybridize, changing their electronic and optical properties. Thus, an exciting direction of "artificial molecules" emerges, leading to a multitude of possibilities for creating a library of new hybrid nanostructures with novel optoelectronic properties with relevance toward diverse applications including quantum technologies.The controlled separation and the barrier height between two adjacent quantum dots are key variables for dictating the magnitude of the coupling energy of the confined wave functions. In the past, coupled double quantum dot architectures prepared by molecular beam epitaxy revealed a coupling energy of few millielectron volts, which limits the applications to mostly cryogenic operation. The realization of artificial quantum molecules with sufficient coupling energy detectable at room temperature calls for the use of colloidal semiconductor nanocrystal building blocks. Moreover, the tunable surface chemistry widely opens the predesigned attachment strategies as well as the solution processing ability of the prepared artificial molecules, making the colloidal nanocrystals as an ideal candidate for this purpose. Despite several approaches that demonstrated enabling of the coupled structures, a general and reproducible method applicable to a broad range of colloidal quantum materials is needed for systematic tailoring of the coupling strength based on a dictated barrierThis Account addresses the development of to create coupled colloidal quantum dot molecules and to study the controlled electronic coupling and their emergent properties. The simplest nanocrystal molecule, a homodimer formed from two core/shell nanocrystal monomers, in analogy to homonuclear diatomic molecules, serves as a model system. The shell material of the two CQDs is structurally fused, resulting in a continuous crystal. This lowers the potential energy barrier, enabling the hybridization of the electronic wave functions. The direct manifestation of the hybridization reflects on the band edge transition shifting toward lower energy and is clearly resolved at room temperature. The hybridization energy within the single homodimer molecule is strongly correlated with the extent of structural continuity, the delocalization of the exciton wave function, and the barrier thickness as calculated numerically. The hybridization impacts the emitted photon statistics manifesting faster radiative decay rate, photon bunching effect, and modified Auger recombination pathway compared to the monomer artificial atoms. Future perspectives for the nanocrystals chemistry paradigm are also highlighted.

摘要

综述

电子耦合以及由此产生的原子杂化是自然界中无数分子丰富特性的基础。表现出量子强限制的胶体量子点(CQD)具有类原子特征,拥有分立的电子能级,这使得CQD作为人工原子的概念得以普及。继续这种类比,当两个原子足够接近形成分子,使得它们的轨道开始重叠时,轨道能量开始分裂为成键和反键状态,这些状态由杂化轨道构成。同样的概念也适用于两个紧密相邻的融合核壳纳米晶体。它们决定发射光子能量的带边态开始杂化,从而改变其电子和光学性质。因此,一个令人兴奋的“人工分子”方向出现了,为创建具有新颖光电性质的新型混合纳米结构库带来了众多可能性,这些纳米结构与包括量子技术在内的各种应用相关。

两个相邻量子点之间的可控间距和势垒高度是决定受限波函数耦合能量大小的关键变量。过去,通过分子束外延制备的耦合双量子点结构显示出几毫电子伏特的耦合能量,这限制了其应用,大多只能在低温下运行。要实现室温下可检测到足够耦合能量的人工量子分子,需要使用胶体半导体纳米晶体构建块。此外,可调节的表面化学广泛地开启了预先设计的连接策略以及所制备人工分子的溶液加工能力,使得胶体纳米晶体成为实现这一目标的理想候选材料。尽管有几种方法展示了耦合结构的实现,但需要一种适用于广泛胶体量子材料的通用且可重复的方法,以便基于规定的势垒系统地调整耦合强度。

本综述阐述了创建耦合胶体量子点分子以及研究可控电子耦合及其涌现性质的进展。最简单的纳米晶体分子,即由两个核/壳纳米晶体单体形成的同二聚体,类似于同核双原子分子,用作模型系统。两个CQD的壳材料在结构上融合,形成连续晶体。这降低了势能垒,使得电子波函数能够杂化。杂化的直接表现反映在带边跃迁向更低能量移动,并且在室温下清晰可辨。单个同二聚体分子内的杂化能量与结构连续性程度、激子波函数的离域以及通过数值计算得到的势垒厚度密切相关。与单体人工原子相比,杂化影响发射光子的统计特性,表现为更快的辐射衰减率、光子聚束效应以及改变的俄歇复合途径。本文还强调了纳米晶体化学范式的未来前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19aa/7931447/6e4dbb49ebfb/ar0c00691_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验