IEEE J Biomed Health Inform. 2022 Jul;26(7):3068-3079. doi: 10.1109/JBHI.2022.3151084. Epub 2022 Jul 1.
Medical imaging technology and gene sequencing technology have long been widely used to analyze the pathogenesis and make precise diagnoses of mild cognitive impairment (MCI). However, few studies involve the fusion of radiomics data with genomics data to make full use of the complementarity between different omics to detect pathogenic factors of MCI. This paper performs multimodal fusion analysis based on functional magnetic resonance imaging (fMRI) data and single nucleotide polymorphism (SNP) data of MCI patients. In specific, first, using correlation analysis methods on sequence information of regions of interests (ROIs) and digitalized gene sequences, the fusion features of samples are constructed. Then, introducing weighted evolution strategy into ensemble learning, a novel weighted evolutionary random forest (WERF) model is built to eliminate the inefficient features. Consequently, with the help of WERF, an overall multimodal data analysis framework is established to effectively identify MCI patients and extract pathogenic factors. Based on the data of MCI patients from the ADNI database and compared with some existing popular methods, the superiority in performance of the framework is verified. Our study has great potential to be an effective tool for pathogenic factors detection of MCI.
医学影像学技术和基因测序技术长期以来被广泛应用于分析发病机制并进行轻度认知障碍(MCI)的精准诊断。然而,很少有研究涉及将放射组学数据与基因组学数据融合,以充分利用不同组学之间的互补性来检测 MCI 的致病因素。本文基于功能磁共振成像(fMRI)数据和 MCI 患者的单核苷酸多态性(SNP)数据进行多模态融合分析。具体来说,首先,通过对感兴趣区域(ROI)的序列信息和数字化基因序列进行相关分析方法,构建样本的融合特征。然后,将加权进化策略引入到集成学习中,构建了一种新的加权进化随机森林(WERF)模型来消除低效特征。因此,借助 WERF,建立了一个全面的多模态数据分析框架,以有效识别 MCI 患者并提取致病因素。通过使用 ADNI 数据库中 MCI 患者的数据,并与一些现有的流行方法进行比较,验证了该框架在性能上的优越性。我们的研究有望成为 MCI 致病因素检测的有效工具。