Suppr超能文献

利用血栓形成和出血风险评估优化非瓣膜性心房颤动的抗凝策略

Harnessing Risk Assessment for Thrombosis and Bleeding to Optimize Anticoagulation Strategy in Nonvalvular Atrial Fibrillation.

作者信息

Zhao Yue, Cao Li-Ya, Zhao Ying-Xin, Zhao Di, Huang Yi-Fan, Wang Fei, Wang Qian

机构信息

Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, P. R. China.

Department of Pharmacy, Army Medical Center, Army Medical University (Third Military Medical University), Chongqing, P. R. China.

出版信息

Thromb Haemost. 2025 May;125(5):492-504. doi: 10.1055/a-2385-1452. Epub 2024 Aug 13.

Abstract

Oral anticoagulation (OAC) following catheter ablation (CA) of nonvalvular atrial fibrillation (NVAF) is essential for the prevention of thrombosis events. Inappropriate application of OACs does not benefit stroke prevention but may be associated with a higher risk of bleeding. Therefore, this study aims to develop clinical data-driven machine learning (ML) methods to predict the risk of thrombosis and bleeding to establish more precise anticoagulation strategies for patients with NVAF.Patients with NVAF who underwent CA therapy were enrolled from from 2015 to 2023. This study compared eight ML algorithms to evaluate the predictive power for both thrombosis and bleeding. Model interpretations were recognized by feature importance and SHapley Additive exPlanations methods. With potential essential risk factors, simplified ML models were proposed to improve the feasibility of the tool.A total of 1,055 participants were recruited, including 105 patients with thrombosis and 252 patients with bleeding. The models based on XGBoost achieved the best performance with accuracies of 0.740 and 0.781 for thrombosis and bleeding, respectively. Age, BNP, and the duration of heparin are closely related to the high risk of thrombosis, whereas the anticoagulation strategy, BNP, and lipids play a crucial role in the occurrence of bleeding. The optimized models enrolling crucial risk factors, RF-T for thrombosis and Xw-B for bleeding, achieved the best recalls of 0.774 and 0.780, respectively.The optimized models will have a great application potential in predicting thrombosis and bleeding among patients with NVAF and will form the basis for future score scales.

摘要

非瓣膜性心房颤动(NVAF)导管消融(CA)后进行口服抗凝(OAC)对于预防血栓形成事件至关重要。OAC应用不当对预防中风无益处,但可能与更高的出血风险相关。因此,本研究旨在开发基于临床数据驱动的机器学习(ML)方法,以预测血栓形成和出血风险,从而为NVAF患者制定更精确的抗凝策略。

2015年至2023年期间纳入了接受CA治疗的NVAF患者。本研究比较了八种ML算法,以评估其对血栓形成和出血的预测能力。通过特征重要性和SHapley加性解释方法对模型进行解释。结合潜在的重要风险因素,提出了简化的ML模型,以提高该工具的可行性。

共招募了1055名参与者,其中包括105名血栓形成患者和252名出血患者。基于XGBoost的模型表现最佳,血栓形成和出血预测准确率分别为0.740和0.781。年龄、脑钠肽(BNP)和肝素使用时长与血栓形成高风险密切相关,而抗凝策略、BNP和血脂在出血发生中起关键作用。纳入关键风险因素的优化模型,用于血栓形成的RF-T和用于出血的Xw-B,召回率分别达到了最佳的0.774和0.780。

优化后的模型在预测NVAF患者血栓形成和出血方面具有巨大的应用潜力,并将为未来的评分量表奠定基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85c7/12040435/8076f115ec9b/10-1055-a-2385-1452-i24030127-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验