Suppr超能文献

一种预测在粘弹性流体中平移颗粒阻力系数的元模型:一种机器学习方法。

A Meta-Model to Predict the Drag Coefficient of a Particle Translating in Viscoelastic Fluids: A Machine Learning Approach.

作者信息

Faroughi Salah A, Roriz Ana I, Fernandes Célio

机构信息

Geo-Intelligence Laboratory, Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA.

Department of Polymer Engineering, Institute for Polymers and Composites (IPC), Campus of Azurém, Engineering School of the University of Minho, 4800-058 Guimarães, Portugal.

出版信息

Polymers (Basel). 2022 Jan 21;14(3):430. doi: 10.3390/polym14030430.

Abstract

This study presents a framework based on Machine Learning (ML) models to predict the drag coefficient of a spherical particle translating in viscoelastic fluids. For the purpose of training and testing the ML models, two datasets were generated using direct numerical simulations (DNSs) for the viscoelastic unbounded flow of Oldroyd-B ( containing 12,120 data points) and Giesekus ( containing 4950 data points) fluids past a spherical particle. The kinematic input features were selected to be Reynolds number, 0<Re≤50, Weissenberg number, 0≤Wi≤10, polymeric retardation ratio, 0<ζ<1, and shear thinning mobility parameter, 0<α<1. The ML models, specifically Random Forest (RF), Deep Neural Network (DNN) and Extreme Gradient Boosting (XGBoost), were all trained, validated, and tested, and their best architecture was obtained using a 10-Fold cross-validation method. All the ML models presented remarkable accuracy on these datasets; however the XGBoost model resulted in the highest R2 and the lowest root mean square error (RMSE) and mean absolute percentage error (MAPE) measures. Additionally, a blind dataset was generated using DNSs, where the input feature coverage was outside the scope of the training set or interpolated within the training sets. The ML models were tested against this blind dataset, to further assess their generalization capability. The DNN model achieved the highest R2 and the lowest RMSE and MAPE measures when inferred on this blind dataset. Finally, we developed a meta-model using stacking technique to ensemble RF, XGBoost and DNN models and output a prediction based on the individual learner's predictions and a DNN meta-regressor. The meta-model consistently outperformed the individual models on all datasets.

摘要

本研究提出了一个基于机器学习(ML)模型的框架,用于预测在粘弹性流体中平移的球形颗粒的阻力系数。为了训练和测试ML模型,使用直接数值模拟(DNS)生成了两个数据集,分别用于Oldroyd-B粘弹性无界流(包含12120个数据点)和Giesekus流体(包含4950个数据点)绕过球形颗粒的情况。运动学输入特征选择为雷诺数,0<Re≤50,魏森贝格数,0≤Wi≤10,聚合物松弛比,0<ζ<1,以及剪切变稀迁移率参数,0<α<1。ML模型,具体为随机森林(RF)、深度神经网络(DNN)和极端梯度提升(XGBoost),均进行了训练、验证和测试,并使用10折交叉验证方法获得了它们的最佳架构。所有ML模型在这些数据集上都表现出了显著的准确性;然而,XGBoost模型的决定系数R2最高,均方根误差(RMSE)和平均绝对百分比误差(MAPE)最低。此外,使用DNS生成了一个盲数据集,其中输入特征覆盖范围超出了训练集范围或在训练集内进行了插值。ML模型针对这个盲数据集进行了测试以进一步评估它们的泛化能力。当在这个盲数据集上进行推断时,DNN模型的R2最高,RMSE和MAPE最低。最后,我们使用堆叠技术开发了一个元模型,将RF、XGBoost和DNN模型集成在一起,并根据个体学习者的预测和一个DNN元回归器输出一个预测结果。该元模型在所有数据集上始终优于个体模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8326/8838701/dea447224b0e/polymers-14-00430-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验