Suppr超能文献

溶剂热合成法制备富铜黝铜矿的相分析及热电性能

Phase Analysis and Thermoelectric Properties of Cu-Rich Tetrahedrite Prepared by Solvothermal Synthesis.

作者信息

Zazakowny Karolina, Kosonowski Artur, Lis Adrianna, Cherniushok Oleksandr, Parashchuk Taras, Tobola Janusz, Wojciechowski Krzysztof T

机构信息

Thermoelectric Research Laboratory, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059 Krakow, Poland.

Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059 Krakow, Poland.

出版信息

Materials (Basel). 2022 Jan 23;15(3):849. doi: 10.3390/ma15030849.

Abstract

Because of the large Seebeck coefficient, low thermal conductivity, and earth-abundant nature of components, tetrahedrites are promising thermoelectric materials. DFT calculations reveal that the additional copper atoms in Cu-rich CuSbS tetrahedrite can effectively engineer the chemical potential towards high thermoelectric performance. Here, the Cu-rich tetrahedrite phase was prepared using a novel approach, which is based on the solvothermal method and piperazine serving both as solvent and reagent. As only pure elements were used for the synthesis, the offered method allows us to avoid the typically observed inorganic salt contaminations in products. Prepared in such a way, CuSbS tetrahedrite materials possess a very high Seebeck coefficient (above 400 μVK) and low thermal conductivity (below 0.3 WmK), yielding to an excellent dimensionless thermoelectric figure of merit ≈ 0.65 at 723 K. The further enhancement of the thermoelectric performance is expected after attuning the carrier concentration to the optimal value for achieving the highest possible power factor in this system.

摘要

由于四面体硫铜矿具有较大的塞贝克系数、较低的热导率以及组成元素在地壳中储量丰富的特性,它们是很有前景的热电材料。密度泛函理论计算表明,富铜的CuSbS四面体硫铜矿中额外的铜原子能够有效地调整化学势,以实现高热电性能。在此,采用一种基于溶剂热法且以哌嗪同时作为溶剂和试剂的新方法制备了富铜四面体硫铜矿相。由于合成过程仅使用了纯元素,所提供的方法使我们能够避免在产物中通常观察到的无机盐污染。以这种方式制备的CuSbS四面体硫铜矿材料具有非常高的塞贝克系数(高于400 μVK)和低热导率(低于0.3 WmK),在723 K时产生了约0.65的优异无量纲热电优值。在将载流子浓度调整到该系统中实现尽可能高的功率因数的最佳值之后,预计热电性能会进一步提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/509a/8836493/e7c76112983f/materials-15-00849-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验