Suppr超能文献

通过在软件定义网络(SDN)网络中将有状态防火墙用作虚拟网络功能,利用机器学习预测攻击模式。

Predicting Attack Pattern via Machine Learning by Exploiting Stateful Firewall as Virtual Network Function in an SDN Network.

作者信息

Prabakaran Senthil, Ramar Ramalakshmi, Hussain Irshad, Kavin Balasubramanian Prabhu, Alshamrani Sultan S, AlGhamdi Ahmed Saeed, Alshehri Abdullah

机构信息

Department of Computer Science and Engineering, Karpagam College of Engineering, Coimbatore 641032, Tamil Nadu, India.

Department of Computer Science and Engineering, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamil Nadu, India.

出版信息

Sensors (Basel). 2022 Jan 18;22(3):709. doi: 10.3390/s22030709.

Abstract

Decoupled data and control planes in Software Defined Networks (SDN) allow them to handle an increasing number of threats by limiting harmful network links at the switching stage. As storage, high-end servers, and network devices, Network Function Virtualization (NFV) is designed to replace purpose-built network elements with VNFs (Virtualized Network Functions). A Software Defined Network Function Virtualization (SDNFV) network is designed in this paper to boost network performance. Stateful firewall services are deployed as VNFs in the SDN network in this article to offer security and boost network scalability. The SDN controller's role is to develop a set of guidelines and rules to avoid hazardous network connectivity. Intruder assaults that employ numerous socket addresses cannot be adequately protected by these strategies. Machine learning algorithms are trained using traditional network threat intelligence data to identify potentially malicious linkages and probable attack targets. Based on conventional network data (DT), Bayesian Network (BayesNet), Naive-Bayes, C4.5, and Decision Table (DT) algorithms are used to predict the target host that will be attacked. The experimental results shows that the Bayesian Network algorithm achieved an average prediction accuracy of 92.87%, Native-Bayes Algorithm achieved an average prediction accuracy of 87.81%, C4.5 Algorithm achieved an average prediction accuracy of 84.92%, and the Decision Tree algorithm achieved an average prediction accuracy of 83.18%. There were 451 k login attempts from 178 different countries, with over 70 k source IP addresses and 40 k source port addresses recorded in a large dataset from nine honeypot servers.

摘要

软件定义网络(SDN)中解耦的数据平面和控制平面使其能够通过在交换阶段限制有害网络链接来应对越来越多的威胁。作为存储、高端服务器和网络设备,网络功能虚拟化(NFV)旨在用虚拟网络功能(VNF)取代专用网络元素。本文设计了一种软件定义网络功能虚拟化(SDNFV)网络以提高网络性能。本文将有状态防火墙服务作为VNF部署在SDN网络中,以提供安全性并提高网络可扩展性。SDN控制器的作用是制定一组准则和规则,以避免危险的网络连接。这些策略无法充分保护使用多个套接字地址的入侵者攻击。使用传统网络威胁情报数据训练机器学习算法,以识别潜在的恶意链接和可能的攻击目标。基于传统网络数据(DT),使用贝叶斯网络(BayesNet)、朴素贝叶斯、C4.5和决策表(DT)算法来预测将受到攻击的目标主机。实验结果表明,贝叶斯网络算法的平均预测准确率达到92.87%,朴素贝叶斯算法的平均预测准确率达到87.81%,C4.5算法的平均预测准确率达到84.92%,决策树算法的平均预测准确率达到83.18%。在来自九个蜜罐服务器的一个大型数据集中,记录了来自178个不同国家的45.1万次登录尝试,源IP地址超过7万个,源端口地址4万个。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc7b/8839531/a420bded48c5/sensors-22-00709-g012.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验