Suppr超能文献

评估随机森林(RF)在澳大利亚东南部地区和局地尺度的小麦产量预测中的应用。

Evaluation of Random Forests (RF) for Regional and Local-Scale Wheat Yield Prediction in Southeast Australia.

机构信息

School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, Australia.

Singapore Food Agency, JEM Office Tower, 52 Jurong Gateway Road, #14-01, Singapore 608550, Singapore.

出版信息

Sensors (Basel). 2022 Jan 18;22(3):717. doi: 10.3390/s22030717.

Abstract

Wheat accounts for more than 50% of Australia's total grain production. The capability to generate accurate in-season yield predictions is important across all components of the agricultural value chain. The literature on wheat yield prediction has motivated the need for more novel works evaluating machine learning techniques such as random forests (RF) at multiple scales. This research applied a Random Forest Regression (RFR) technique to build regional and local-scale yield prediction models at the pixel level for three southeast Australian wheat-growing paddocks, each located in Victoria (VIC), New South Wales (NSW) and South Australia (SA) using 2018 yield maps from data supplied by collaborating farmers. Time-series Normalized Difference Vegetation Index (NDVI) data derived from Planet's high spatio-temporal resolution imagery, meteorological variables and yield data were used to train, test and validate the models at pixel level using Python libraries for (a) regional-scale three-paddock composite and (b) individual paddocks. The composite region-wide RF model prediction for the three paddocks performed well ( = 0.86, = 0.18 t ha). RF models for individual paddocks in VIC ( = 0.89, = 0.15 t ha) and NSW ( = 0.87, = 0.07 t ha) performed well, but moderate performance was seen for SA ( = 0.45, = 0.25 t ha). Generally, high values were underpredicted and low values overpredicted. This study demonstrated the feasibility of applying RF modeling on satellite imagery and yielded 'big data' for regional as well as local-scale yield prediction.

摘要

小麦占澳大利亚粮食总产量的 50%以上。在农业价值链的所有环节中,生成准确的季节性产量预测的能力都非常重要。关于小麦产量预测的文献促使人们需要更多的新工作来评估机器学习技术,如随机森林(RF)在多个尺度上的应用。本研究应用随机森林回归(RFR)技术,使用合作农户提供的 2018 年产量图,在像素级水平上为澳大利亚东南部的三个小麦种植区(每个区分别位于维多利亚州(VIC)、新南威尔士州(NSW)和南澳大利亚州(SA))建立区域和局地尺度的产量预测模型。使用 Planet 高时空分辨率图像、气象变量和产量数据派生的时间序列归一化差异植被指数(NDVI)数据,在 Python 库中用于(a)区域尺度的三 paddock 综合和(b)单个 paddock,对模型进行像素级训练、测试和验证。三个 paddock 的综合区域 RF 模型预测表现良好( = 0.86, = 0.18 t ha)。VIC( = 0.89, = 0.15 t ha)和 NSW( = 0.87, = 0.07 t ha)的单个 paddock RF 模型表现良好,但 SA( = 0.45, = 0.25 t ha)表现中等。总体而言,高值被低估,低值被高估。本研究证明了在卫星图像上应用 RF 建模的可行性,并为区域和局地尺度的产量预测提供了“大数据”。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce29/8839090/3dc1bcbf8e27/sensors-22-00717-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验