Suppr超能文献

基于特征选择的青贮玉米植株氮含量遥感反演

Remote sensing inversion of nitrogen content in silage maize plants based on feature selection.

作者信息

Cheng Kejing, Yan Jixuan, Li Guang, Ma Weiwei, Guo Zichen, Wang Wenning, Li Haolin, Da Qihong, Li Xuchun, Yao Yadong

机构信息

College of Water Conservancy and Hydropower Engineering, Gansu Agricultural University, Lanzhou, China.

State Key Laboratory of Crop Science in Arid Habitat Co-constructed by Province and Ministry, Gansu Agricultural University, Lanzhou, China.

出版信息

Front Plant Sci. 2025 Mar 6;16:1554842. doi: 10.3389/fpls.2025.1554842. eCollection 2025.

Abstract

Excessive nitrogen application and low nitrogen use efficiency have been major issues in China's agricultural development, posing significant challenges for field management. Nitrogen is a critical nutrient for crop growth, playing an indispensable role in crop development, yield formation, and quality enhancement. Therefore, precisely controlling nitrogen application rates can reduce environmental pollution caused by excessive fertilization and improve nitrogen use efficiency. This study employs multispectral remote sensing images, combined with field-measured nitrogen content, to develop canopy nitrogen content inversion models for maize using three algorithms: backpropagation neural network (BP), support vector machine (SVM), and partial least squares regression (PLSR). The results reveal that there is a degree of redundancy in the information contained in various spectral indices. Feature selection effectively eliminates correlated and redundant spectral information, thereby improving modeling efficiency. The spectral indices Green Index (GI) and Nitrogen Reflectance Index (NRI) exhibit strong correlations with nitrogen content in the maize canopy, suggesting that the green and red spectral bands are crucial for retrieving maize's biophysical and biochemical parameters. In studies on nitrogen content inversion in the maize canopy, the random forest (RF) algorithm, coupled with PLSR, demonstrated superior predictive performance. Compared to the standalone PLSR model, accuracy improved by 3.5%-6.5%, providing a scientific foundation and technical support for precise nitrogen diagnosis and fertilizer management in maize cultivation.

摘要

过量施氮和低氮利用效率一直是中国农业发展中的主要问题,给田间管理带来了重大挑战。氮是作物生长的关键养分,在作物发育、产量形成和品质提升中发挥着不可或缺的作用。因此,精确控制施氮量可以减少过量施肥造成的环境污染,提高氮利用效率。本研究利用多光谱遥感影像,结合田间实测氮含量,采用反向传播神经网络(BP)、支持向量机(SVM)和偏最小二乘回归(PLSR)三种算法建立玉米冠层氮含量反演模型。结果表明,各种光谱指数所包含的信息存在一定程度的冗余。特征选择有效地消除了相关和冗余的光谱信息,从而提高了建模效率。光谱指数绿度指数(GI)和氮素反射率指数(NRI)与玉米冠层氮含量表现出很强的相关性,表明绿色和红色光谱带对于反演玉米的生物物理和生化参数至关重要。在玉米冠层氮含量反演研究中,随机森林(RF)算法与PLSR相结合表现出优异的预测性能。与单独的PLSR模型相比,精度提高了3.5%-6.5%,为玉米种植中的精确氮诊断和肥料管理提供了科学依据和技术支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aec1/11922896/6dc274342ae2/fpls-16-1554842-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验