Suppr超能文献

面向空气质量监测应用的低成本传感器选择和校准的数据驱动技术。

Data-Driven Techniques for Low-Cost Sensor Selection and Calibration for the Use Case of Air Quality Monitoring.

机构信息

Faculty of Engineering and Informatics, University of Bradford, Bradford BD7 1DP, UK.

City of Bradford Metropolitan District Council, Bradford BD1 1HX, UK.

出版信息

Sensors (Basel). 2022 Jan 31;22(3):1093. doi: 10.3390/s22031093.

Abstract

With the emergence of Low-Cost Sensor (LCS) devices, measuring real-time data on a large scale has become a feasible alternative approach to more costly devices. Over the years, sensor technologies have evolved which has provided the opportunity to have diversity in LCS selection for the same task. However, this diversity in sensor types adds complexity to appropriate sensor selection for monitoring tasks. In addition, LCS devices are often associated with low confidence in terms of sensing accuracy because of the complexities in sensing principles and the interpretation of monitored data. From the data analytics point of view, data quality is a major concern as low-quality data more often leads to low confidence in the monitoring systems. Therefore, any applications on building monitoring systems using LCS devices need to focus on two main techniques: sensor selection and calibration to improve data quality. In this paper, data-driven techniques were presented for sensor calibration techniques. To validate our methodology and techniques, an air quality monitoring case study from the Bradford district, UK, as part of two European Union (EU) funded projects was used. For this case study, the candidate sensors were selected based on the literature and market availability. The candidate sensors were narrowed down into the selected sensors after analysing their consistency. To address data quality issues, four different calibration methods were compared to derive the best-suited calibration method for the LCS devices in our use case system. In the calibration, meteorological parameters temperature and humidity were used in addition to the observed readings. Moreover, we uniquely considered Absolute Humidity () and Relative Humidity () as part of the calibration process. To validate the result of experimentation, the Coefficient of Determination (), Root Mean Square Error (), and Mean Absolute Error () were compared for both and . The experimental results showed that calibration with has better performance as compared with . The experimental results showed the selection and calibration techniques that can be used in designing similar LCS based monitoring systems.

摘要

随着低成本传感器 (LCS) 设备的出现,大规模实时数据测量已成为一种可行的替代方法,可以替代更昂贵的设备。多年来,传感器技术不断发展,为同一任务提供了多样化的 LCS 选择机会。然而,传感器类型的多样性增加了监测任务中合适传感器选择的复杂性。此外,由于传感原理的复杂性和监测数据的解释,LCS 设备通常与传感精度的低置信度相关联。从数据分析的角度来看,数据质量是一个主要关注点,因为低质量的数据通常会导致监测系统的低置信度。因此,任何使用 LCS 设备的建筑物监测系统应用都需要关注两个主要技术:传感器选择和校准以提高数据质量。在本文中,提出了数据驱动的技术来进行传感器校准技术。为了验证我们的方法和技术,使用了来自英国布拉德福德区的空气质量监测案例研究,该案例研究是两个欧盟 (EU) 资助项目的一部分。在这个案例研究中,根据文献和市场可用性选择了候选传感器。在分析了候选传感器的一致性后,将候选传感器缩小为选定的传感器。为了解决数据质量问题,比较了四种不同的校准方法,以找到最适合我们用例系统中 LCS 设备的校准方法。在校准中,除了观测读数外,还使用气象参数温度和湿度。此外,我们还将绝对湿度 () 和相对湿度 () 作为校准过程的一部分。为了验证实验结果,比较了 和 的决定系数 ()、均方根误差 () 和平均绝对误差 ()。实验结果表明,与 相比, 校准具有更好的性能。实验结果表明了可以用于设计类似基于 LCS 的监测系统的选择和校准技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5314/8839978/0f9c8493a3f8/sensors-22-01093-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验