Suppr超能文献

提高空气污染暴露测量精度:市政低成本空气悬浮颗粒物传感器网络的统计校正。

Improving accuracy of air pollution exposure measurements: Statistical correction of a municipal low-cost airborne particulate matter sensor network.

机构信息

Department of Applied Math, University of Colorado Boulder, USA.

Department of Geography, University of Colorado Boulder, USA.

出版信息

Environ Pollut. 2021 Jan 1;268(Pt B):115833. doi: 10.1016/j.envpol.2020.115833. Epub 2020 Oct 15.

Abstract

Low-cost air quality sensors can help increase spatial and temporal resolution of air pollution exposure measurements. These sensors, however, most often produce data of lower accuracy than higher-end instruments. In this study, we investigated linear and random forest models to correct PM measurements from the Denver Department of Public Health and Environment (DDPHE)'s network of low-cost sensors against measurements from co-located U.S. Environmental Protection Agency Federal Equivalence Method (FEM) monitors. Our training set included data from five DDPHE sensors from August 2018 through May 2019. Our testing set included data from two newly deployed DDPHE sensors from September 2019 through mid-December 2019. In addition to PM, temperature, and relative humidity from the low-cost sensors, we explored using additional temporal and spatial variables to capture unexplained variability in sensor measurements. We evaluated results using spatial and temporal cross-validation techniques. For the long-term dataset, a random forest model with all time-varying covariates and length of arterial roads within 500 m was the most accurate (testing RMSE = 2.9 μg/m and R = 0.75; leave-one-location-out (LOLO)-validation metrics on the training set: RMSE = 2.2 μg/m and R = 0.93). For on-the-fly correction, we found that a multiple linear regression model using the past eight weeks of low-cost sensor PM, temperature, and humidity data plus a near-highway indicator predicted each new week of data best (testing RMSE = 3.1 μg/m and R = 0.78; LOLO-validation metrics on the training set: RMSE = 2.3 μg/m and R = 0.90). The statistical methods detailed here will be used to correct low-cost sensor measurements to better understand PM pollution within the city of Denver. This work can also guide similar implementations in other municipalities by highlighting the improved accuracy from inclusion of variables other than temperature and relative humidity to improve accuracy of low-cost sensor PM data.

摘要

低成本空气质量传感器可以帮助提高空气污染暴露测量的空间和时间分辨率。然而,这些传感器通常会产生比高端仪器精度更低的数据。在这项研究中,我们调查了线性和随机森林模型,以校正丹佛公共卫生部和环境署(DDPHE)的低成本传感器网络对来自美国环保署联邦等效方法(FEM)监测器的 PM 测量值。我们的训练集包括 2018 年 8 月至 2019 年 5 月来自五个 DDPHE 传感器的数据。我们的测试集包括 2019 年 9 月至 12 月中旬新部署的两个 DDPHE 传感器的数据。除了来自低成本传感器的 PM、温度和相对湿度之外,我们还探索了使用其他时间和空间变量来捕捉传感器测量中的未解释变异性。我们使用空间和时间交叉验证技术评估结果。对于长期数据集,具有所有时变协变量和 500 米内动脉道路长度的随机森林模型是最准确的(测试 RMSE=2.9μg/m 和 R=0.75;在训练集上的留一位置验证指标:RMSE=2.2μg/m 和 R=0.93)。对于实时校正,我们发现使用过去八周的低成本传感器 PM、温度和湿度数据加上附近高速公路指标的多元线性回归模型可以最好地预测每新一周的数据(测试 RMSE=3.1μg/m 和 R=0.78;在训练集上的留一位置验证指标:RMSE=2.3μg/m 和 R=0.90)。此处详细介绍的统计方法将用于校正低成本传感器测量值,以更好地了解丹佛市的 PM 污染。这项工作还可以通过突出除温度和相对湿度以外的变量的纳入可以提高低成本传感器 PM 数据的准确性,从而为其他城市的类似实施提供指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验