Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France.
Research Institute for Sustainability, Helmholtz Centre Potsdam, Berliner Strasse 130, 14467 Potsdam, Germany.
Sci Total Environ. 2023 Sep 1;889:164063. doi: 10.1016/j.scitotenv.2023.164063. Epub 2023 May 17.
Low concentrations of pollutants may already be associated with significant health effects. An accurate assessment of individual exposure to pollutants therefore requires measuring pollutant concentrations at the finest possible spatial and temporal scales. Low-cost sensors (LCS) of particulate matter (PM) meet this need so well that their use is constantly growing worldwide. However, everyone agrees that LCS must be calibrated before use. Several calibration studies have already been published, but there is not yet a standardized and well-established methodology for PM sensors. In this work, we develop a method combining an adaptation of an approach developed for gas-phase pollutants with a dust event preprocessing to calibrate PM LCS (PMS7003) commonly used in urban environments. From the selection of outliers to model tuning and error estimation, the developed protocol allows to analyze, process and calibrate LCS data using multilinear (MLR) and random forest (RFR) regressions for comparison with a reference instrument. We demonstrate that the calibration performance was very good for PM and PM but turns out less good for PM (R = 0.94, RMSE = 0.55 μg/m, NRMSE = 12 % for PM with MLR, R = 0.92, RMSE = 0.70 μg/m, NRMSE = 12 % for PM with RFR and R = 0.54, RMSE = 2.98 μg/m, NRMSE = 27 % for PM with RFR). Dust events removal significantly improved LCS accuracy for PM (11 % increase of R and 49 % decrease of RMSE) but no significant changes for PM. Best calibration models included internal relative humidity and temperature for PM and only internal relative humidity for PM. It turns out that PM cannot be properly measured and calibrated because of technical limitations of the PMS7003 sensor. This work therefore provides guidelines for PM LCS calibration. This represents a first step toward standardizing calibration protocols and facilitating collaborative research.
低浓度的污染物可能已经与显著的健康影响有关。因此,准确评估个体对污染物的暴露程度需要以尽可能精细的时空尺度测量污染物浓度。低成本传感器(LCS)对颗粒物(PM)的测量满足了这一需求,因此在全球范围内的使用不断增加。然而,大家都认为 LCS 在使用前必须进行校准。已经发表了一些校准研究,但目前还没有用于 PM 传感器的标准化和成熟方法。在这项工作中,我们开发了一种方法,将一种针对气相污染物的方法进行了改编,并结合了灰尘事件预处理,以校准常用于城市环境的 PM LCS(PMS7003)。从异常值的选择到模型调整和误差估计,所开发的方案允许使用多元线性回归(MLR)和随机森林(RFR)回归来分析、处理和校准 LCS 数据,并与参考仪器进行比较。我们证明,对于 PM 和 PM,校准性能非常好,但对于 PM 则不太好(使用 MLR 时,R 为 0.94,RMSE 为 0.55μg/m,NRMSE 为 12%;使用 RFR 时,R 为 0.92,RMSE 为 0.70μg/m,NRMSE 为 12%;使用 RFR 时,R 为 0.54,RMSE 为 2.98μg/m,NRMSE 为 27%)。灰尘事件的去除显著提高了 PM 的 LCS 精度(R 增加 11%,RMSE 减少 49%),但对 PM 没有显著影响。对于 PM,最佳校准模型包括内部相对湿度和温度,而对于 PM,则只包括内部相对湿度。事实证明,由于 PMS7003 传感器的技术限制,PM 无法得到正确的测量和校准。因此,这项工作为 PM LCS 校准提供了指导。这是标准化校准协议和促进合作研究的第一步。