Suppr超能文献

基于深度学习的快速磁共振弛豫定量成像:技术现状与未来趋势综述。

Rapid MR relaxometry using deep learning: An overview of current techniques and emerging trends.

机构信息

Biomedical Engineering and Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York.

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio.

出版信息

NMR Biomed. 2022 Apr;35(4):e4416. doi: 10.1002/nbm.4416. Epub 2020 Oct 15.

Abstract

Quantitative mapping of MR tissue parameters such as the spin-lattice relaxation time (T ), the spin-spin relaxation time (T ), and the spin-lattice relaxation in the rotating frame (T ), referred to as MR relaxometry in general, has demonstrated improved assessment in a wide range of clinical applications. Compared with conventional contrast-weighted (eg T -, T -, or T -weighted) MRI, MR relaxometry provides increased sensitivity to pathologies and delivers important information that can be more specific to tissue composition and microenvironment. The rise of deep learning in the past several years has been revolutionizing many aspects of MRI research, including image reconstruction, image analysis, and disease diagnosis and prognosis. Although deep learning has also shown great potential for MR relaxometry and quantitative MRI in general, this research direction has been much less explored to date. The goal of this paper is to discuss the applications of deep learning for rapid MR relaxometry and to review emerging deep-learning-based techniques that can be applied to improve MR relaxometry in terms of imaging speed, image quality, and quantification robustness. The paper is comprised of an introduction and four more sections. Section 2 describes a summary of the imaging models of quantitative MR relaxometry. In Section 3, we review existing "classical" methods for accelerating MR relaxometry, including state-of-the-art spatiotemporal acceleration techniques, model-based reconstruction methods, and efficient parameter generation approaches. Section 4 then presents how deep learning can be used to improve MR relaxometry and how it is linked to conventional techniques. The final section concludes the review by discussing the promise and existing challenges of deep learning for rapid MR relaxometry and potential solutions to address these challenges.

摘要

磁共振组织参数的定量测绘,如自旋-晶格弛豫时间(T1)、自旋-自旋弛豫时间(T2)和旋转框架中的自旋-晶格弛豫时间(T2*),通常被称为磁共振弛豫度测量,已在广泛的临床应用中证明了其评估能力的提升。与传统的对比加权(例如 T1、T2 或 T2*加权)MRI 相比,磁共振弛豫度测量提供了对病变的更高敏感性,并提供了更具组织成分和微环境特异性的重要信息。近年来,深度学习的兴起正在彻底改变 MRI 研究的许多方面,包括图像重建、图像分析以及疾病诊断和预后。尽管深度学习在磁共振弛豫度测量和一般定量 MRI 方面也显示出了巨大的潜力,但迄今为止,这一研究方向的探索还很少。本文的目标是讨论深度学习在快速磁共振弛豫度测量中的应用,并回顾新兴的基于深度学习的技术,这些技术可以应用于提高磁共振弛豫度测量的成像速度、图像质量和量化稳健性。本文由引言和四个部分组成。第 2 节描述了定量磁共振弛豫度成像模型的概述。在第 3 节中,我们回顾了现有的加速磁共振弛豫度的“经典”方法,包括最新的时空加速技术、基于模型的重建方法和高效的参数生成方法。第 4 节接着介绍了深度学习如何用于改善磁共振弛豫度测量,以及它与传统技术的联系。最后一节通过讨论深度学习在快速磁共振弛豫度测量中的应用前景和存在的挑战以及解决这些挑战的潜在解决方案,对综述进行了总结。

相似文献

10
Improving Quantitative Magnetic Resonance Imaging Using Deep Learning.利用深度学习改进定量磁共振成像
Semin Musculoskelet Radiol. 2020 Aug;24(4):451-459. doi: 10.1055/s-0040-1709482. Epub 2020 Sep 29.

引用本文的文献

本文引用的文献

1
Machine Learning for Rapid Magnetic Resonance Fingerprinting Tissue Property Quantification.用于快速磁共振指纹组织特性定量的机器学习
Proc IEEE Inst Electr Electron Eng. 2020 Jan;108(1):69-85. doi: 10.1109/JPROC.2019.2936998. Epub 2019 Sep 11.
7
Artificial intelligence-enabled rapid diagnosis of patients with COVID-19.人工智能助力 COVID-19 患者快速诊断。
Nat Med. 2020 Aug;26(8):1224-1228. doi: 10.1038/s41591-020-0931-3. Epub 2020 May 19.
8
Use of Early T1 Mapping for MRI in Acute Myocarditis.早期T1映射在急性心肌炎MRI中的应用
Radiology. 2020 May;295(2):326-327. doi: 10.1148/radiol.2020200171. Epub 2020 Mar 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验