Laboratory of Automatic Control, Signal Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
Molecules. 2022 Jan 28;27(3):900. doi: 10.3390/molecules27030900.
Prostate cancer (PCa) is the second most frequently diagnosed cancer for men and is viewed as the fifth leading cause of death worldwide. The body mass index (BMI) is taken as a vital criterion to elucidate the association between obesity and PCa. In this study, systematic methods are employed to investigate how obesity influences the noncutaneous malignancies of PCa. By comparing the core signaling pathways of lean and obese patients with PCa, we are able to investigate the relationships between obesity and pathogenic mechanisms and identify significant biomarkers as drug targets for drug discovery. Regarding drug design specifications, we take drug-target interaction, drug regulation ability, and drug toxicity into account. One deep neural network (DNN)-based drug-target interaction (DTI) model is trained in advance for predicting drug candidates based on the identified biomarkers. In terms of the application of the DNN-based DTI model and the consideration of drug design specifications, we suggest two potential multiple-molecule drugs to prevent PCa (covering lean and obese PCa) and obesity-specific PCa, respectively. The proposed multiple-molecule drugs (apigenin, digoxin, and orlistat) not only help to prevent PCa, suppressing malignant metastasis, but also result in lower production of fatty acids and cholesterol, especially for obesity-specific PCa.
前列腺癌(PCa)是男性中第二大常见的癌症,被认为是全球第五大死亡原因。体重指数(BMI)被视为阐明肥胖与 PCa 之间关联的重要标准。在这项研究中,系统的方法被用来研究肥胖如何影响 PCa 的非皮肤恶性肿瘤。通过比较瘦型和肥胖型 PCa 患者的核心信号通路,我们能够研究肥胖与发病机制之间的关系,并确定重要的生物标志物作为药物发现的药物靶点。关于药物设计规范,我们考虑了药物-靶点相互作用、药物调节能力和药物毒性。一个基于深度神经网络(DNN)的药物-靶点相互作用(DTI)模型被预先训练,用于根据鉴定出的生物标志物预测候选药物。基于 DNN 基于 DTI 模型的应用和药物设计规范的考虑,我们分别建议了两种潜在的多分子药物,以预防 PCa(涵盖瘦型和肥胖型 PCa)和肥胖特异性 PCa。所提出的多分子药物(芹菜素、地高辛和奥利司他)不仅有助于预防 PCa,抑制恶性转移,而且还会导致脂肪酸和胆固醇的产生减少,特别是对于肥胖特异性 PCa。