Laboratory of Automatic Control, Signaling Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
Int J Mol Sci. 2022 Sep 8;23(18):10409. doi: 10.3390/ijms231810409.
In this study, we provide a systems biology method to investigate the carcinogenic mechanism of oral squamous cell carcinoma (OSCC) in order to identify some important biomarkers as drug targets. Further, a systematic drug discovery method with a deep neural network (DNN)-based drug-target interaction (DTI) model and drug design specifications is proposed to design a potential multiple-molecule drug for the medical treatment of OSCC before clinical trials. First, we use big database mining to construct the candidate genome-wide genetic and epigenetic network (GWGEN) including a protein-protein interaction network (PPIN) and a gene regulatory network (GRN) for OSCC and non-OSCC. In the next step, real GWGENs are identified for OSCC and non-OSCC by system identification and system order detection methods based on the OSCC and non-OSCC microarray data, respectively. Then, the principal network projection (PNP) method was used to extract core GWGENs of OSCC and non-OSCC from real GWGENs of OSCC and non-OSCC, respectively. Afterward, core signaling pathways were constructed through the annotation of KEGG pathways, and then the carcinogenic mechanism of OSCC was investigated by comparing the core signal pathways and their downstream abnormal cellular functions of OSCC and non-OSCC. Consequently, HES1, , NF-κB and SP1 are identified as significant biomarkers of OSCC. In order to discover multiple molecular drugs for these significant biomarkers (drug targets) of the carcinogenic mechanism of OSCC, we trained a DNN-based drug-target interaction (DTI) model by DTI databases to predict candidate drugs for these significant biomarkers. Finally, drug design specifications such as adequate drug regulation ability, low toxicity and high sensitivity are employed to filter out the appropriate molecular drugs metformin, gefitinib and gallic-acid to combine as a potential multiple-molecule drug for the therapeutic treatment of OSCC.
在这项研究中,我们提供了一种系统生物学方法来研究口腔鳞状细胞癌(OSCC)的致癌机制,以确定一些重要的生物标志物作为药物靶点。此外,还提出了一种基于深度神经网络(DNN)的药物-靶标相互作用(DTI)模型和药物设计规范的系统药物发现方法,以设计一种潜在的多分子药物,用于 OSCC 的临床试验前治疗。首先,我们使用大数据挖掘构建候选全基因组遗传和表观遗传网络(GWGEN),包括 OSCC 和非 OSCC 的蛋白质-蛋白质相互作用网络(PPIN)和基因调控网络(GRN)。在下一步中,我们分别基于 OSCC 和非 OSCC 的微阵列数据,使用系统识别和系统阶检测方法来识别 OSCC 和非 OSCC 的真实 GWGEN。然后,使用主网络投影(PNP)方法从 OSCC 和非 OSCC 的真实 GWGEN 中分别提取 OSCC 和非 OSCC 的核心 GWGEN。之后,通过KEGG 途径的注释构建核心信号途径,然后通过比较 OSCC 和非 OSCC 的核心信号途径及其下游异常细胞功能来研究 OSCC 的致癌机制。结果,确定 HES1、NF-κB 和 SP1 为 OSCC 的显著生物标志物。为了发现这些 OSCC 致癌机制的显著生物标志物(药物靶点)的多种分子药物,我们通过 DTI 数据库训练了一个基于 DNN 的药物-靶标相互作用(DTI)模型,以预测这些显著生物标志物的候选药物。最后,采用适当的药物调节能力、低毒性和高灵敏度等药物设计规范,筛选出合适的分子药物二甲双胍、吉非替尼和没食子酸,结合作为一种潜在的多分子药物,用于 OSCC 的治疗。