Ludwig-Maximilians-Universität München, Faculty of Biology, Planegg-Martinsried, Germany.
SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Marburg, Germany.
mBio. 2021 Feb 22;13(1):e0375321. doi: 10.1128/mbio.03753-21. Epub 2022 Feb 15.
Bacillus subtilis DynA is a member of the dynamin superfamily, involved in membrane remodeling processes. DynA was shown to catalyze full membrane fusion and it plays a role in membrane surveillance against antibiotics. We show here that DynA also provides a novel resistance mechanism against phage infection. Cells lacking DynA are efficiently lysed after phage infection and virus replication. DynA does not prevent phage infection and replication in individual cells, but significantly delays host cell lysis, thereby slowing down the release of phage progeny from the host cells. During the process, DynA forms large, almost immobile clusters on the cell membrane that seem to support membrane integrity. Single-molecule tracking revealed a shift of freely diffusive molecules within the cytosol toward extended, confined motion at the cell membrane following phage induction. Thus, the bacterial dynamins are the first anti-phage system reported to delay host cell lysis and the last line of defense of a multilayered antiviral defense. DynA is therefore providing protective effects on the population, but not on single cell level. Bacteria have to cope with myriads of phages in their natural environments. Consequently, they have evolved sophisticated systems to prevent phage infection or epidemic spreading of the infection in the population. We show here that a bacterial dynamin-like protein is involved in phage resistance. The Bacillus subtilis DynA protein delays lysis of infected bacteria and reduces spreading of the phage particles. Thus, the dynamin mediated protection is not at the level of the individual cell, but on the population level. The bacterial DynA is the last line of defense to reduce the deleterious effect of a phage infection in a bacterial community. Interestingly, dynamin-like proteins such as Mx proteins are also involved in antiviral activities in Eukaryotes. Thus, the interaction of dynamin-like proteins and viruses seem to be an evolutionary ancient process.
枯草芽孢杆菌 DynA 是动力蛋白超家族的成员,参与膜重塑过程。研究表明,DynA 能催化完全的膜融合,并在对抗生素的膜监测中发挥作用。我们在这里表明,DynA 还提供了一种针对噬菌体感染的新的抗性机制。缺乏 DynA 的细胞在噬菌体感染后会迅速被裂解,病毒也会迅速复制。DynA 不会阻止噬菌体在单个细胞中的感染和复制,但会显著延迟宿主细胞的裂解,从而减缓噬菌体从宿主细胞中释放的速度。在此过程中,DynA 在细胞膜上形成大的、几乎不动的聚集体,这些聚集体似乎支持细胞膜的完整性。单分子追踪显示,在噬菌体诱导后,细胞质中自由扩散的分子向细胞膜延伸、受限的运动发生转移。因此,细菌动力蛋白是第一个被报道能延迟宿主细胞裂解的抗噬菌体系统,也是多层次抗病毒防御的最后一道防线。DynA 因此为群体提供了保护作用,但不是单个细胞水平。
细菌在其自然环境中要应对无数的噬菌体。因此,它们进化出了复杂的系统来防止噬菌体感染或感染在群体中的流行传播。我们在这里表明,一种细菌动力蛋白样蛋白参与了噬菌体的抗性。枯草芽孢杆菌 DynA 蛋白延迟了感染细菌的裂解,并减少了噬菌体颗粒的传播。因此,动力蛋白介导的保护作用不是在单个细胞水平,而是在群体水平。细菌 DynA 是减少噬菌体感染对细菌群落造成有害影响的最后一道防线。有趣的是,类似于 Mx 蛋白的动力蛋白样蛋白也参与真核生物的抗病毒活性。因此,动力蛋白样蛋白和病毒之间的相互作用似乎是一个古老的进化过程。