National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.
Xinjiang Key Laboratory of Crop Biotechnology, Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Wulumuqi, Xinjaing, 830000, People's Republic of China.
BMC Biol. 2022 Feb 15;20(1):45. doi: 10.1186/s12915-022-01232-3.
Base editors (BEs) display diverse applications in a variety of plant species such as Arabidopsis, rice, wheat, maize, soybean, and cotton, where they have been used to mediate precise base pair conversions without the collateral generation of undesirable double-stranded breaks (DSB). Studies of single-nucleotide polymorphisms (SNPs) underpinning plant traits are still challenging, particularly in polyploidy species where such SNPs are present in multiple copies, and simultaneous modification of all alleles would be required for functional analysis. Allotetraploid cotton has a number of homoeologous gene pairs located in the A and D sub-genomes with considerable SNPs, and it is desirable to develop adenine base editors (ABEs) for efficient and precise A-to-G single-base editing without DSB in such complex genome.
We established various ABE vectors based on different engineered adenosine deaminase (TadA) proteins fused to Cas9 variants (dCas9, nCas9), enabling efficient A to G editing up to 64% efficiency on-target sites of the allotetraploid cotton genome. Comprehensive analysis showed that GhABE7.10n exhibited the highest editing efficiency, with the main editing sites specifically located at the position A5 (counting the PAM as positions 21-23). Furthermore, DNA and RNA off-target analysis of cotton plants edited with GhABE7.10n and GhABE7.10d by whole genome and whole-transcriptome sequencing revealed no DNA off-target mutations, while very low-level RNA off-target mutations were detected. A new base editor, namely GhABE7.10dCpf1 (7.10TadA + dCpf1), that recognizes a T-rich PAM, was developed for the first time. Targeted A-to-G substitutions generated a single amino acid change in the cotton phosphatidyl ethanolamine-binding protein (GhPEBP), leading to a compact cotton plant architecture, an ideotype for mechanized harvesting of modern cotton production.
Our data illustrate the robustness of adenine base editing in plant species with complex genomes, which provides efficient and precise toolkit for cotton functional genomics and precise molecular breeding.
碱基编辑器(BEs)在多种植物物种中显示出多种应用,如拟南芥、水稻、小麦、玉米、大豆和棉花,在这些物种中,它们被用于介导精确的碱基对转换,而不会产生不必要的双链断裂(DSB)。对植物性状相关的单核苷酸多态性(SNP)的研究仍然具有挑战性,特别是在多倍体物种中,这些 SNP 存在多个拷贝,并且需要同时修饰所有等位基因才能进行功能分析。异源四倍体棉花有许多位于 A 和 D 亚基因组中的同源基因对,存在大量 SNP,理想情况下是开发腺嘌呤碱基编辑器(ABE),以便在这种复杂的基因组中实现高效、精确的 A 到 G 单碱基编辑,而不会产生 DSB。
我们基于不同工程化的腺嘌呤脱氨酶(TadA)蛋白与 Cas9 变体(dCas9、nCas9)融合,建立了各种 ABE 载体,能够在异源四倍体棉花基因组的靶位上实现高达 64%的 A 到 G 编辑效率。综合分析表明,GhABE7.10n 表现出最高的编辑效率,主要编辑位点特异性位于 A5 位置(以 PAM 为第 21-23 位计数)。此外,通过全基因组和全转录组测序对用 GhABE7.10n 和 GhABE7.10d 编辑的棉花植物进行 DNA 和 RNA 脱靶分析,未发现 DNA 脱靶突变,而检测到非常低水平的 RNA 脱靶突变。首次开发了一种新的碱基编辑器,即 GhABE7.10dCpf1(7.10TadA + dCpf1),它识别富含 T 的 PAM。靶向的 A 到 G 替换导致棉花磷酯酰乙醇胺结合蛋白(GhPEBP)中的单个氨基酸发生变化,导致棉花植株结构紧凑,成为现代棉花生产机械化收获的理想株型。
我们的数据说明了在具有复杂基因组的植物物种中,腺嘌呤碱基编辑的稳健性,为棉花功能基因组学和精确的分子育种提供了高效、精确的工具包。