Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY, USA.
J Biomed Sci. 2022 Feb 14;29(1):13. doi: 10.1186/s12929-022-00795-1.
Transcription, metabolism and DNA damage response are tightly regulated to preserve the genomic integrity, and O-GlcNAc transferase (OGT) is positioned to connect the three. Prostate cancer is the most common cancer in men, and androgen-ablation therapy halts disease progression. However, a significant number of prostate cancer patients develop resistance against anti-androgens, and this incurable disease is termed castration-resistant prostate cancer (CRPC). We have shown that combined inhibition of OGT and the transcription elongation kinase CDK9 induce CRPC-selective anti-proliferative effects. Here, we explain the functional basis for these combinatorial effects.
We used comprehensive mass spectrometry profiling of short-term CDK9 inhibitor effects on O-GlcNAcylated proteins in an isogenic cell line system that models transition from PC to CRPC. In addition, we used both ChIP-seq and RNA-seq profiling, and pulldown experiments in multiple CRPC models. Finally, we validated our findings in prostate cancer patient samples.
Inhibition of CDK9 results in an OGT-dependent remodeling of the proteome in prostate cancer cells. More specifically, the activity of the DNA damage repair protein MRE11 is regulated in response to CDK9 inhibition in an OGT-dependent manner. MRE11 is enriched at the O-GlcNAc-marked loci. CDK9 inhibition does not decrease the expression of mRNAs whose genes are bound by both O-GlcNAc and MRE11. Combined inhibition of CDK9 and OGT or MRE11 further decreases RNA polymerase II activity, induces DNA damage signaling, and blocks the survival of prostate cancer cells. These effects are seen in CRPC cells but not in normal prostate cells. Mechanistically, OGT activity is required for MRE11 chromatin-loading in cells treated with CDK9 inhibitor. Finally, we show that MRE11 and O-GlcNAc are enriched at the prostate cancer-specific small nucleotide polymorphic sites, and the loss of MRE11 activity results in a hyper-mutator phenotype in patient tumors.
Both OGT and MRE11 are essential for the repair of CDK9 inhibitor-induced DNA damage. Our study raises the possibility of targeting CDK9 to elicit DNA damage in CRPC setting as an adjuvant to other treatments.
转录、代谢和 DNA 损伤反应受到严格调控,以维持基因组的完整性,而 O-GlcNAc 转移酶(OGT)则处于连接这三者的位置。前列腺癌是男性最常见的癌症,雄激素剥夺疗法可以阻止疾病的进展。然而,相当数量的前列腺癌患者对雄激素拮抗剂产生了耐药性,这种无法治愈的疾病被称为去势抵抗性前列腺癌(CRPC)。我们已经表明,联合抑制 OGT 和转录延伸激酶 CDK9 会诱导 CRPC 选择性的抗增殖作用。在这里,我们解释了这些组合效应的功能基础。
我们使用综合质谱分析,研究了在一个模拟从 PC 到 CRPC 过渡的同基因细胞系系统中,短期 CDK9 抑制剂对 O-GlcNAc 化蛋白的影响。此外,我们还使用了 ChIP-seq 和 RNA-seq 分析,以及多个 CRPC 模型中的下拉实验。最后,我们在前列腺癌患者样本中验证了我们的发现。
CDK9 的抑制导致前列腺癌细胞中 OGT 依赖性的蛋白质组重构。更具体地说,DNA 损伤修复蛋白 MRE11 的活性受到 CDK9 抑制的调节,这种调节方式依赖于 OGT。MRE11 富集在 O-GlcNAc 标记的基因座上。CDK9 抑制不会降低其基因同时被 O-GlcNAc 和 MRE11 标记的 mRNAs 的表达。联合抑制 CDK9 和 OGT 或 MRE11 进一步降低了 RNA 聚合酶 II 的活性,诱导了 DNA 损伤信号,并阻止了前列腺癌细胞的存活。这些效应仅在 CRPC 细胞中可见,而在正常前列腺细胞中不可见。在机制上,OGT 活性是 CDK9 抑制剂处理的细胞中 MRE11 染色质加载所必需的。最后,我们发现 MRE11 和 O-GlcNAc 富集在前列腺癌特异性的小核苷酸多态性位点上,并且 MRE11 活性的丧失导致患者肿瘤中出现超突变表型。
OGT 和 MRE11 对于修复 CDK9 抑制剂诱导的 DNA 损伤都是必不可少的。我们的研究提出了一种可能性,即靶向 CDK9 以在 CRPC 环境中引发 DNA 损伤,作为其他治疗方法的辅助手段。