文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

芍药苷促进 MC3T3-E1 成骨细胞分化的作用及机制。

The effects and mechanism of paeoniflorin in promoting osteogenic differentiation of MC3T3-E1.

机构信息

Department of Rehabilitation Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136, Jingzhou Road, Xiangyang, 441021, Hubei, China.

出版信息

J Orthop Surg Res. 2022 Feb 14;17(1):90. doi: 10.1186/s13018-022-02965-1.


DOI:10.1186/s13018-022-02965-1
PMID:35164817
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8842535/
Abstract

BACKGROUND: The incidence of osteoporosis and osteoporotic fractures is increasing every year. Traditional Chinese Medicine (TCM) can shed new light on the treatment of osteoporosis. This study aimed to explore the role and mechanism of paeoniflorin in promoting osteogenic differentiation of an osteoblast precursor cell line (MC3T3-E1). METHODS: MC3T3-E1 cells were cultured in osteogenic induction medium (OIM) and OIM combined with different concentrations of paeoniflorin. The optimal dose of paeoniflorin was assessed by a cell counting kit-8 (CCK-8) assay. Then, alkaline phosphatase (ALP) and Alizarin Red S (ARS) staining were performed to assess the osteogenic capacity of paeoniflorin. The transcription of osteogenic genes and the expression of osteogenic proteins were assessed by RT-PCR and Western blotting, respectively. The transcription of Wnt/β-catenin signaling pathway genes and proteins was assessed by RT-PCR and Western blotting, respectively. Finally, Dickkopf-1 (DKK-1), a Wnt/β-catenin signaling pathway inhibitor, was used to identify whether the Wnt/β-catenin signaling pathway was involved in the osteogenic differentiation of paeoniflorin. Osteoclastogenesis in RAW264.7 cells was identified by tartrate-resistant acid phosphatase (TRAP) staining. RESULTS: At concentrations ranging from 0.1 to 100 μM, paeoniflorin was not cytotoxic to MC3T3-E1 cells. Paeoniflorin significantly increased the osteogenic differentiation of MC3T3-E1 cells in a dose-dependent manner. Moreover, paeoniflorin significantly increased osteogenic differentiation gene and protein expression. Through bioinformatic analysis, paeoniflorin-affected genes were found to be involved in different signaling pathways, such as the Wnt/β-catenin signaling pathway. Paeoniflorin enhanced β-catenin and CyclinD1 expression compared with that of the control groups. DKK-1 partially reversed the promoting effects of paeoniflorin in promoting osteogenic differentiation of MC3T3-E1 cells. Moreover, paeoniflorin inhibited the osteoclastogenesis of RAW264.7 cells. CONCLUSION: Paeoniflorin promotes osteogenic differentiation in MC3T3-E1 cells by regulating the Wnt/β-catenin pathway. Paeoniflorin is a potential therapeutic agent for the treatment of osteoporosis.

摘要

背景:骨质疏松症和骨质疏松性骨折的发病率逐年上升。中医药可以为骨质疏松症的治疗带来新的思路。本研究旨在探讨芍药苷促进成骨前体细胞系(MC3T3-E1)成骨分化的作用和机制。

方法:将 MC3T3-E1 细胞在成骨诱导培养基(OIM)和 OIM 中加入不同浓度芍药苷中培养。用细胞计数试剂盒-8(CCK-8)法评估芍药苷的最佳剂量。然后,通过碱性磷酸酶(ALP)和茜素红 S(ARS)染色评估芍药苷的成骨能力。通过 RT-PCR 和 Western blot 分别评估成骨基因和蛋白的转录。通过 RT-PCR 和 Western blot 分别评估 Wnt/β-catenin 信号通路基因和蛋白的转录。最后,用 Wnt/β-catenin 信号通路抑制剂 Dickkopf-1(DKK-1)鉴定 Wnt/β-catenin 信号通路是否参与芍药苷的成骨分化。通过抗酒石酸酸性磷酸酶(TRAP)染色鉴定 RAW264.7 细胞中的破骨细胞生成。

结果:在 0.1 至 100 μM 浓度范围内,芍药苷对 MC3T3-E1 细胞无细胞毒性。芍药苷呈剂量依赖性显著增加 MC3T3-E1 细胞的成骨分化。此外,芍药苷显著增加成骨分化基因和蛋白的表达。通过生物信息学分析,发现芍药苷影响的基因参与不同的信号通路,如 Wnt/β-catenin 信号通路。与对照组相比,芍药苷增强了 β-catenin 和 CyclinD1 的表达。DKK-1 部分逆转了芍药苷促进 MC3T3-E1 细胞成骨分化的作用。此外,芍药苷抑制 RAW264.7 细胞的破骨细胞生成。

结论:芍药苷通过调节 Wnt/β-catenin 通路促进 MC3T3-E1 细胞的成骨分化。芍药苷是治疗骨质疏松症的潜在治疗药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adc1/8842535/53494c9b8137/13018_2022_2965_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adc1/8842535/0e20c551a3bc/13018_2022_2965_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adc1/8842535/b4e4c12240cd/13018_2022_2965_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adc1/8842535/8ef92e4af181/13018_2022_2965_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adc1/8842535/cc79eef2a427/13018_2022_2965_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adc1/8842535/eba6b40df9ca/13018_2022_2965_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adc1/8842535/fd57f27a104e/13018_2022_2965_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adc1/8842535/2144cd4a05e7/13018_2022_2965_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adc1/8842535/28d37eb09121/13018_2022_2965_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adc1/8842535/5dbbc2948add/13018_2022_2965_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adc1/8842535/ba5df01a0f0f/13018_2022_2965_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adc1/8842535/1f5a6c617e91/13018_2022_2965_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adc1/8842535/53494c9b8137/13018_2022_2965_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adc1/8842535/0e20c551a3bc/13018_2022_2965_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adc1/8842535/b4e4c12240cd/13018_2022_2965_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adc1/8842535/8ef92e4af181/13018_2022_2965_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adc1/8842535/cc79eef2a427/13018_2022_2965_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adc1/8842535/eba6b40df9ca/13018_2022_2965_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adc1/8842535/fd57f27a104e/13018_2022_2965_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adc1/8842535/2144cd4a05e7/13018_2022_2965_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adc1/8842535/28d37eb09121/13018_2022_2965_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adc1/8842535/5dbbc2948add/13018_2022_2965_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adc1/8842535/ba5df01a0f0f/13018_2022_2965_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adc1/8842535/1f5a6c617e91/13018_2022_2965_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adc1/8842535/53494c9b8137/13018_2022_2965_Fig12_HTML.jpg

相似文献

[1]
The effects and mechanism of paeoniflorin in promoting osteogenic differentiation of MC3T3-E1.

J Orthop Surg Res. 2022-2-14

[2]
MSI1 Stabilizes MACF1 to Inhibit Apoptosis of MC3T3-E1 Cells Induced by High Glucose and Promote Osteogenic Differentiation Through Wnt/β-Catenin Signaling Pathway.

Mol Biotechnol. 2023-7

[3]
Protection of Icariin Against Hydrogen Peroxide-Induced MC3T3-E1 Cell Oxidative Damage.

Orthop Surg. 2021-4

[4]
Metformin activates Wnt/β-catenin for the treatment of diabetic osteoporosis.

BMC Endocr Disord. 2022-7-22

[5]
MicroRNA-15a-5p plays a role in osteogenic MC3T3-E1 cells differentiation by targeting PDCD4 (programmed cell death 4) via Wnt/β-catenin dependent signaling pathway.

Bioengineered. 2021-12

[6]
Berberine promotes bone marrow-derived mesenchymal stem cells osteogenic differentiation via canonical Wnt/β-catenin signaling pathway.

Toxicol Lett. 2016-1-5

[7]
Let-7b downgrades CCND1 to repress osteogenic proliferation and differentiation of MC3T3-E1 cells: An implication in osteoporosis.

Kaohsiung J Med Sci. 2020-10

[8]
Protective Effects of Pretreatment with Quercetin Against Lipopolysaccharide-Induced Apoptosis and the Inhibition of Osteoblast Differentiation via the MAPK and Wnt/β-Catenin Pathways in MC3T3-E1 Cells.

Cell Physiol Biochem. 2017

[9]
Salidroside promoted osteogenic differentiation of adipose-derived stromal cells through Wnt/β-catenin signaling pathway.

J Orthop Surg Res. 2021-7-16

[10]
Leonurine hydrochloride promotes osteogenic differentiation and increases osteoblastic bone formation in ovariectomized mice by Wnt/β-catenin pathway.

Biochem Biophys Res Commun. 2018-9-14

引用本文的文献

[1]
MEDAG expression in vitro and paeoniflorin alleviates bone loss by regulating the MEDAG/AMPK/PPARγ signaling pathway .

Heliyon. 2024-1-6

[2]
Sword Bean () Pods Induce Differentiation in MC3T3-E1 Osteoblast Cells by Activating the BMP2/SMAD/RUNX2 Pathway.

Nutrients. 2023-10-16

本文引用的文献

[1]
Interactions between extracellular signal-regulated kinase 1/2 and P38 MAP kinase pathways in the control of RUNX2 phosphorylation and transcriptional activity.

J Bone Miner Res. 2021-10

[2]
Paeoniflorin Attenuates Dexamethasone-Induced Apoptosis of Osteoblast Cells and Promotes Bone Formation via Regulating AKT/mTOR/Autophagy Signaling Pathway.

Evid Based Complement Alternat Med. 2021-4-7

[3]
Paeoniflorin ameliorates experimental colitis by inhibiting gram-positive bacteria-dependent MDP-NOD2 pathway.

Int Immunopharmacol. 2021-1

[4]
A review on the pharmacokinetics of paeoniflorin and its anti-inflammatory and immunomodulatory effects.

Biomed Pharmacother. 2020-10

[5]
Osteoclast-derived miR-23a-5p-containing exosomes inhibit osteogenic differentiation by regulating Runx2.

Cell Signal. 2020-6

[6]
Anti-inflammatory and immunoregulatory effects of paeoniflorin and total glucosides of paeony.

Pharmacol Ther. 2019-12-10

[7]
A review for the anti-inflammatory effects of paeoniflorin in inflammatory disorders.

Life Sci. 2019-10-11

[8]
The Wnt/β-catenin signaling pathway is regulated by titanium with nanotopography to induce osteoblast differentiation.

Colloids Surf B Biointerfaces. 2019-9-20

[9]
Effects of glycyrrhizin on the pharmacokinetics of paeoniflorin in rats and its potential mechanism.

Pharm Biol. 2019-12

[10]
Paeoniflorin protects against intestinal ischemia/reperfusion by activating LKB1/AMPK and promoting autophagy.

Pharmacol Res. 2019-6-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索