Suppr超能文献

癌症图谱:Neo4j 中的肺癌属性图数据库。

A cancer graph: a lung cancer property graph database in Neo4j.

机构信息

VA Boston Healthcare System, 150 South Huntington Avenue, Boston, MA, 02130, USA.

出版信息

BMC Res Notes. 2022 Feb 14;15(1):45. doi: 10.1186/s13104-022-05912-9.

Abstract

OBJECTIVES

A novel graph data model of non-small cell lung cancer clinical and genomic data has been constructed with two aims: (1) provide a suitable model for facilitating graph analytics within the Neo4j framework or through tools which can interact through existing Neo4j APIs; and (2) provide a base model extensible to other cancer types and additional datasets such as those derived from electronic health records and other real world sources.

DATA DESCRIPTION

Clinical and genomic data integrated with a novel property graph database schema from publicly available datasets and analyses based on The Cancer Genome Atlas lung cancer datasets augmented by with subgraphs patient-patient social network from similarity and correlation as well as individual based biological networks.

摘要

目的

构建了一个非小细胞肺癌临床和基因组数据的新型图数据模型,具有两个目的:(1)提供一个适合于在 Neo4j 框架内或通过可通过现有 Neo4j API 进行交互的工具进行图分析的模型;(2)提供一个可扩展到其他癌症类型和其他数据集(例如来自电子健康记录和其他真实来源的数据)的基础模型。

数据描述

临床和基因组数据与来自公开数据集的新型属性图数据库模式集成,并基于癌症基因组图谱肺癌数据集进行分析,其中还包括通过相似性和相关性以及基于个体的生物网络来自患者-患者社交网络的子图。

相似文献

1
A cancer graph: a lung cancer property graph database in Neo4j.
BMC Res Notes. 2022 Feb 14;15(1):45. doi: 10.1186/s13104-022-05912-9.
2
neo4jsbml: import systems biology markup language data into the graph database Neo4j.
PeerJ. 2024 Jan 16;12:e16726. doi: 10.7717/peerj.16726. eCollection 2024.
3
Building Protein-Protein Interaction Graph Database Using Neo4j.
Methods Mol Biol. 2023;2690:469-479. doi: 10.1007/978-1-0716-3327-4_36.
4
Use of Graph Database for the Integration of Heterogeneous Biological Data.
Genomics Inform. 2017 Mar;15(1):19-27. doi: 10.5808/GI.2017.15.1.19. Epub 2017 Mar 29.
5
Decision tree learning in Neo4j on homogeneous and unconnected graph nodes from biological and clinical datasets.
BMC Med Inform Decis Mak. 2023 Mar 6;22(Suppl 6):347. doi: 10.1186/s12911-023-02112-8.
6
Applying graph database technology for analyzing perturbed co-expression networks in cancer.
Database (Oxford). 2020 Dec 11;2020. doi: 10.1093/database/baaa110.
7
COMBAT-TB-NeoDB: fostering tuberculosis research through integrative analysis using graph database technologies.
Bioinformatics. 2020 Feb 1;36(3):982-983. doi: 10.1093/bioinformatics/btz658.
8
Graph4Med: a web application and a graph database for visualizing and analyzing medical databases.
BMC Bioinformatics. 2022 Dec 12;23(1):537. doi: 10.1186/s12859-022-05092-0.
9
Implementation of a HL7-CQL Engine Using the Graph Database Neo4J.
Stud Health Technol Inform. 2019 Sep 3;267:46-51. doi: 10.3233/SHTI190804.
10
Boosting predictive models and augmenting patient data with relevant genomic and pathway information.
Comput Biol Med. 2024 May;174:108398. doi: 10.1016/j.compbiomed.2024.108398. Epub 2024 Apr 3.

本文引用的文献

1
An overview of graph databases and their applications in the biomedical domain.
Database (Oxford). 2021 May 18;2021. doi: 10.1093/database/baab026.
2
Whole-genome characterization of lung adenocarcinomas lacking alterations in the RTK/RAS/RAF pathway.
Cell Rep. 2021 Feb 23;34(8):108784. doi: 10.1016/j.celrep.2021.108784.
3
Cancer Statistics, 2021.
CA Cancer J Clin. 2021 Jan;71(1):7-33. doi: 10.3322/caac.21654. Epub 2021 Jan 12.
4
Graph kernels combined with the neural network on protein classification.
J Bioinform Comput Biol. 2019 Oct;17(5):1950030. doi: 10.1142/S0219720019500306.
6
The Immune Landscape of Cancer.
Immunity. 2018 Apr 17;48(4):812-830.e14. doi: 10.1016/j.immuni.2018.03.023. Epub 2018 Apr 5.
7
Exploiting graph kernels for high performance biomedical relation extraction.
J Biomed Semantics. 2018 Jan 30;9(1):7. doi: 10.1186/s13326-017-0168-3.
8
Reactome graph database: Efficient access to complex pathway data.
PLoS Comput Biol. 2018 Jan 29;14(1):e1005968. doi: 10.1371/journal.pcbi.1005968. eCollection 2018 Jan.
9
graphkernels: R and Python packages for graph comparison.
Bioinformatics. 2018 Feb 1;34(3):530-532. doi: 10.1093/bioinformatics/btx602.
10
Systematic integration of biomedical knowledge prioritizes drugs for repurposing.
Elife. 2017 Sep 22;6:e26726. doi: 10.7554/eLife.26726.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验