Suppr超能文献

皮质和白质病变拓扑结构影响多发性硬化症的胼胝体局部萎缩。

Cortical and white matter lesion topology influences focal corpus callosum atrophy in multiple sclerosis.

机构信息

Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.

Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden.

出版信息

J Neuroimaging. 2022 May;32(3):471-479. doi: 10.1111/jon.12977. Epub 2022 Feb 14.

Abstract

BACKGROUND AND PURPOSE

Corpus callosum (CC) atrophy is a strong predictor of multiple sclerosis (MS) disability but the contributing pathological mechanisms remain uncertain. We aimed to apply advanced MRI to explore what drives the often nonuniform callosal atrophy.

METHODS

Prospective brain 7 Tesla and 3 Tesla Human Connectom Scanner MRI were performed in 92 MS patients. White matter, leukocortical, and intracortical lesions were manually segmented. FreeSurfer was used to segment the CC and topographically classify lesions per lobe or as deep white matter lesions. Regression models were calculated to predict focal CC atrophy.

RESULTS

The frontal and parietal lobes contained the majority (≥80%) of all lesion classifications in both relapsing-remitting and secondary progressive MS subtypes. The anterior subsection of the CC had the smallest proportional volume difference between subtypes (11%). Deep, temporal, and occipital white matter lesions, and occipital intracortical lesions were the strongest predictors of middle-posterior callosal atrophy (adjusted R  = .54-.39, P < .01).

CONCLUSIONS

Both white matter and cortical lesions contribute to regional corpus callosal atrophy. The lobe-specific lesion topology does not fully explain the inhomogeneous CC atrophy.

摘要

背景与目的

胼胝体(CC)萎缩是多发性硬化症(MS)残疾的强烈预测指标,但导致其萎缩的病理机制仍不确定。我们旨在应用先进的 MRI 来探索是什么导致了胼胝体的非均匀性萎缩。

方法

对 92 例 MS 患者进行前瞻性大脑 7 特斯拉和 3 特斯拉 Human Connectom Scanner MRI 检查。手动分割脑白质、白质内和皮质下病变。使用 FreeSurfer 分割 CC 并根据叶或深部白质病变进行拓扑分类病变。计算回归模型以预测局灶性 CC 萎缩。

结果

在复发缓解型和继发进展型 MS 亚型中,额叶和顶叶包含了大多数(≥80%)的所有病变分类。CC 的前部分子段在亚型之间的比例体积差异最小(11%)。深部、颞部和枕部白质病变以及枕部皮质内病变是中后部胼胝体萎缩的最强预测因子(调整后的 R 分别为.54-.39,P <.01)。

结论

脑白质和皮质病变均导致胼胝体区域性萎缩。叶特异性病变拓扑结构并不能完全解释胼胝体的非均匀性萎缩。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4e4/9305945/c97a80414788/JON-32-471-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验