Suppr超能文献

d-阿洛酮糖通过骨骼肌中 IRE1α 磺化-RIDD-衰减轴改善高血糖。

d-Allulose Ameliorates Hyperglycemia Through IRE1α Sulfonation-RIDD- Decay Axis in the Skeletal Muscle.

机构信息

Department of Pharmacology and Institute of New Drug Development, Jeonbuk National University Medical School, Jeonju, South Korea.

Non-Clinical Evaluation Center Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, South Korea.

出版信息

Antioxid Redox Signal. 2022 Aug;37(4-6):229-245. doi: 10.1089/ars.2021.0207. Epub 2022 Apr 18.

Abstract

The skeletal muscle maintains glucose disposal insulin signaling and glucose transport. The progression of diabetes and insulin resistance is critically influenced by endoplasmic reticulum (ER) stress. d-Allulose, a low-calorie sugar substitute, has shown crucial physiological activities under conditions involving hyperglycemia and insulin resistance. However, the molecular mechanisms of d-allulose in the progression of diabetes have not been fully elucidated. Here, we evaluated the effect of d-allulose on hyperglycemia-associated ER stress responses in human skeletal myoblasts (HSkM) and diabetic and high-fat diet-fed mice. d-allulose effectively controlled glycemic markers such as insulin and hemoglobin A1c (HbA1c), showing anti-diabetic effects by inhibiting the disruption of insulin receptor substrate (IRS)-1 tyrosine phosphorylation and glucose transporter 4 (GLUT4) expression, in which the phosphatidylinositol-3 kinase (PI3K)/protein kinase B (Akt) pathway is involved. The levels of glucose dysmetabolism-based NADPH oxidase, such as NADPH-dependent oxidoreductase (Nox) 4, were highly increased, and their interaction with IRE1α and the resultant sulfonation-regulated IRE1-dependent decay (RIDD)- decay were also highly increased under diabetic conditions, which were controlled with d-allulose treatment. Skeletal muscle cells grown with a high glucose medium supplemented with d-allulose showed controlled IRE1α sulfonation-RIDD- decay, in which Nox4 was involved. The study observations indicate that d-allulose contributes to the muscular glucose disposal in the diabetic state where ER-localized Nox4-induced IRE1α sulfonation results in the decay of , a core factor for controlling glucose metabolism. 37, 229-245.

摘要

骨骼肌维持葡萄糖摄取、胰岛素信号和葡萄糖转运。内质网(ER)应激对糖尿病和胰岛素抵抗的进展具有关键影响。d-阿洛酮糖是一种低热量的糖替代品,在高血糖和胰岛素抵抗的情况下表现出重要的生理活性。然而,d-阿洛酮糖在糖尿病进展中的分子机制尚未完全阐明。在这里,我们评估了 d-阿洛酮糖对人骨骼肌母细胞(HSkM)和糖尿病及高脂肪饮食喂养小鼠高血糖相关 ER 应激反应的影响。d-阿洛酮糖有效控制血糖标志物,如胰岛素和糖化血红蛋白(HbA1c),通过抑制胰岛素受体底物(IRS)-1酪氨酸磷酸化和葡萄糖转运体 4(GLUT4)表达的破坏,显示出抗糖尿病作用,其中涉及磷脂酰肌醇-3 激酶(PI3K)/蛋白激酶 B(Akt)通路。葡萄糖代谢紊乱基础上的 NADPH 氧化酶水平,如 NADPH 依赖性氧化还原酶(Nox)4,在糖尿病条件下高度增加,并且它们与 IRE1α的相互作用以及由此产生的磺化调节的 IRE1 依赖性衰减(RIDD)-衰减也高度增加,这可以通过 d-阿洛酮糖处理来控制。在补充 d-阿洛酮糖的高葡萄糖培养基中生长的骨骼肌细胞显示出受控制的 IRE1α磺化-RIDD-衰减,其中 Nox4 参与其中。研究观察表明,d-阿洛酮糖有助于糖尿病状态下的肌肉葡萄糖摄取,在这种状态下,内质网定位的 Nox4 诱导的 IRE1α磺化导致控制葡萄糖代谢的核心因子的衰减。37,229-245。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验