College of Mathematics and Information Sciences, Guangzhou Center for Applied Mathematics, Guangzhou University, Guangzhou, People's Republic of China.
J Biol Dyn. 2022 Dec;16(1):254-276. doi: 10.1080/17513758.2022.2037760. Epub 2022 Feb 15.
We investigate a mosquito population suppression model, which includes the release of -infected males causing incomplete cytoplasmic incompatibility (CI). The model consists of two sub-equations by considering the density-dependent birth rate of wild mosquitoes. By assuming the release waiting period is larger than the sexual lifespan of -infected males, we derive four thresholds: the CI intensity threshold , the release amount thresholds and , and the waiting period threshold . From a biological view, we assume throughout the paper. When , we prove the origin is locally asymptotically stable iff , and the model admits a unique -periodic solution iff , which is globally asymptotically stable. When , we show the origin is globally asymptotically stable iff , and the model has a unique -periodic solution iff , which is globally asymptotically stable. Our theoretical results are confirmed by numerical simulations.
我们研究了一种蚊虫种群抑制模型,其中包括释放感染的雄性蚊虫导致不完全细胞质不兼容(CI)。该模型由两个子方程组成,考虑了野生蚊虫的密度依赖出生率。通过假设释放等待期 大于感染雄性的性寿命 ,我们推导出四个阈值:CI 强度阈值 ,释放量阈值 和 ,以及等待期阈值 。从生物学的角度来看,我们假设 贯穿整篇论文。当 时,我们证明原点 是局部渐近稳定的当且仅当 ,并且模型存在唯一的 -周期解当且仅当 ,该解是全局渐近稳定的。当 时,我们表明原点 是全局渐近稳定的当且仅当 ,并且模型存在唯一的 -周期解当且仅当 ,该解是全局渐近稳定的。我们的理论结果通过数值模拟得到了验证。