Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, 19104 Philadelphia, Pennsylvania, USA.
Department of Digital Health, SAIHST, Sungkyunkwan University, Samsung Medical Center, 06355 Seoul, Republic of Korea.
Gigascience. 2022 Feb 15;11. doi: 10.1093/gigascience/giac002.
Disease complications, the onset of secondary phenotypes given a primary condition, can exacerbate the long-term severity of outcomes. However, the exact cause of many of these cross-phenotype associations is still unknown. One potential reason is shared genetic etiology-common genetic drivers may lead to the onset of multiple phenotypes. Disease-disease networks (DDNs), where nodes represent diseases and edges represent associations between diseases, can provide an intuitive way of understanding the relationships between phenotypes. Using summary statistics from a phenome-wide association study (PheWAS), we can generate a corresponding DDN where edges represent shared genetic variants between diseases. Such a network can help us analyze genetic associations across the diseasome, the landscape of all human diseases, and identify potential genetic influences for disease complications.
To improve the ease of network-based analysis of shared genetic components across phenotypes, we developed the humaN disEase phenoType MAp GEnerator (NETMAGE), a web-based tool that produces interactive DDN visualizations from PheWAS summary statistics. Users can search the map by various attributes and select nodes to view related phenotypes, associated variants, and various network statistics. As a test case, we used NETMAGE to construct a network from UK BioBank (UKBB) PheWAS summary statistic data. Our map correctly displayed previously identified disease comorbidities from the UKBB and identified concentrations of hub diseases in the endocrine/metabolic and circulatory disease categories. By examining the associations between phenotypes in our map, we can identify potential genetic explanations for the relationships between diseases and better understand the underlying architecture of the human diseasome. Our tool thus provides researchers with a means to identify prospective genetic targets for drug design, using network medicine to contribute to the exploration of personalized medicine.
疾病并发症是由主要疾病引起的继发表型的出现,可能会加剧长期预后的严重程度。然而,许多这些跨表型关联的确切原因仍然未知。一个潜在的原因是共同的遗传病因——共同的遗传驱动因素可能导致多种表型的出现。疾病-疾病网络(DDN),其中节点代表疾病,边代表疾病之间的关联,可以提供一种直观的方式来理解表型之间的关系。使用表型全基因组关联研究(PheWAS)的汇总统计信息,我们可以生成相应的 DDN,其中边代表疾病之间共享的遗传变异。这样的网络可以帮助我们分析整个疾病组(人类所有疾病的景观)中的遗传关联,并确定疾病并发症的潜在遗传影响。
为了提高基于网络的跨表型共享遗传成分分析的易用性,我们开发了 humaN disEase phenoType MAp GEnerator(NETMAGE),这是一个基于网络的工具,它可以从 PheWAS 汇总统计信息生成交互式 DDN 可视化。用户可以通过各种属性搜索地图,并选择节点查看相关表型、相关变体和各种网络统计信息。作为一个测试用例,我们使用 NETMAGE 从 UK BioBank(UKBB)PheWAS 汇总统计数据构建了一个网络。我们的地图正确地显示了 UKBB 中先前确定的疾病共病,并确定了内分泌/代谢和循环系统疾病类别的枢纽疾病集中。通过检查我们地图中表型之间的关联,我们可以为疾病之间的关系确定潜在的遗传解释,并更好地理解人类疾病组的基础结构。因此,我们的工具为研究人员提供了一种识别药物设计潜在遗传靶点的方法,利用网络医学为探索个性化医学做出贡献。