Department of Ophthalmology and Visual Science, Department of Biomedical Informatics, and Division of Human Genetics, The Ohio State University, Columbus, OH 43212, USA.
Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA.
Bioinformatics. 2019 Oct 15;35(20):4179-4180. doi: 10.1093/bioinformatics/btz179.
Pleiotropy plays an important role in furthering our understanding of the shared genetic architecture of different human diseases and traits. However, exploring and visualizing pleiotropic information with currently publicly available tools is limiting and challenging. To aid researchers in constructing and digesting pleiotropic networks, we present PleioNet, a web-based visualization tool for exploring this information across human diseases and traits. This program provides an intuitive and interactive web interface that seamlessly integrates large database queries with visualizations that enable users to quickly explore complex high-dimensional pleiotropic information. PleioNet works on all modern computer and mobile web browsers, making pleiotropic information readily available to a broad range of researchers and clinicians with diverse technical backgrounds. We expect that PleioNet will be an important tool for studying the underlying pleiotropic connections among human diseases and traits.
PleioNet is hosted on Google cloud and freely available at http://www.pleionet.com/.
多效性在深入了解不同人类疾病和特征的共享遗传结构方面起着重要作用。然而,利用当前公开可用的工具探索和可视化多效性信息具有一定的局限性和挑战性。为了帮助研究人员构建和理解多效性网络,我们提出了 PleioNet,这是一个用于探索人类疾病和特征中多效性信息的基于网络的可视化工具。该程序提供了直观的交互网络界面,可无缝集成大型数据库查询和可视化,使用户能够快速探索复杂的高维多效性信息。PleioNet 可在所有现代计算机和移动网络浏览器上运行,使具有不同技术背景的广泛研究人员和临床医生都能轻松获得多效性信息。我们预计 PleioNet 将成为研究人类疾病和特征之间潜在多效性联系的重要工具。
PleioNet 托管在谷歌云端,可在 http://www.pleionet.com/ 免费使用。