Suppr超能文献

神经毒性α-突触核蛋白多形体的预测建模。

Predictive Modeling of Neurotoxic α-Synuclein Polymorphs.

机构信息

Department of Physics, Bernal Institute, University of Limerick, Limerick, Ireland.

出版信息

Methods Mol Biol. 2022;2340:379-399. doi: 10.1007/978-1-0716-1546-1_17.

Abstract

Assembly of monomeric α-synuclein (αS) into aggregation-resistant helically folded tetramers and related multimers is a key target for Parkinson's disease (PD). Protein dynamics hampers experimental characterization of the polymorphism of these structures and so computational modeling and simulation is providing a complementary approach to obtain high-resolution structural information on the assembly of αS and interactions with biological surfaces. These computational techniques are particularly valuable for intrinsically disordered proteins (IDPs) and short-lived peptide and protein assemblies with as yet undetermined 3D structures. Experimental observables such as NMR J-coupling constants and chemical shifts can be predicted directly from simulation data, and compared with available experimental data to generate the most physically realistic atomic-resolution structure. For appropriately validated and benchmarked computational models, macroscopic aggregation properties can be related to the calculated thermodynamic properties at an atomic level. In this chapter, we describe a useful protocol for designing helical αS multimers, especially tetramers, and scanning the peptide-membrane interface for cell-bound αS tetramers. These computationally modeled structures are validated by comparison with the range of available known experimental parameters at time of writing in early 2020, and used to generate predictive design rules to motivate and guide experiments.

摘要

单体 α-突触核蛋白 (αS) 组装成抗聚集的螺旋折叠四聚体和相关多聚体是帕金森病 (PD) 的一个关键靶点。蛋白质动力学阻碍了这些结构多态性的实验表征,因此计算建模和模拟为获得 αS 组装及其与生物表面相互作用的高分辨率结构信息提供了一种补充方法。这些计算技术对于固有无序蛋白 (IDPs) 和具有尚未确定的 3D 结构的短寿命肽和蛋白质组装特别有价值。实验可观测值,如 NMR J 耦合常数和化学位移,可以直接从模拟数据中预测,并与可用的实验数据进行比较,以生成最符合物理现实的原子分辨率结构。对于经过适当验证和基准测试的计算模型,可以将宏观聚集性质与原子水平上计算的热力学性质相关联。在本章中,我们描述了一种设计螺旋 αS 多聚体(特别是四聚体)的有用方案,并扫描肽-膜界面以寻找细胞结合的 αS 四聚体。这些计算建模的结构通过与 2020 年初撰写本文时可用的各种已知实验参数进行比较来验证,并用于生成预测性设计规则,以激发和指导实验。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验