Suppr超能文献

治疗性酶的计算设计和高通量筛选工具。

Tools for computational design and high-throughput screening of therapeutic enzymes.

作者信息

Vasina Michal, Velecký Jan, Planas-Iglesias Joan, Marques Sergio M, Skarupova Jana, Damborsky Jiri, Bednar David, Mazurenko Stanislav, Prokop Zbynek

机构信息

Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, Pekarska 53, Brno, Czech Republic.

Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.

出版信息

Adv Drug Deliv Rev. 2022 Apr;183:114143. doi: 10.1016/j.addr.2022.114143. Epub 2022 Feb 12.

Abstract

Therapeutic enzymes are valuable biopharmaceuticals in various biomedical applications. They have been successfully applied for fibrinolysis, cancer treatment, enzyme replacement therapies, and the treatment of rare diseases. Still, there is a permanent demand to find new or better therapeutic enzymes, which would be sufficiently soluble, stable, and active to meet specific medical needs. Here, we highlight the benefits of coupling computational approaches with high-throughput experimental technologies, which significantly accelerate the identification and engineering of catalytic therapeutic agents. New enzymes can be identified in genomic and metagenomic databases, which grow thanks to next-generation sequencing technologies exponentially. Computational design and machine learning methods are being developed to improve catalytically potent enzymes and predict their properties to guide the selection of target enzymes. High-throughput experimental pipelines, increasingly relying on microfluidics, ensure functional screening and biochemical characterization of target enzymes to reach efficient therapeutic enzymes.

摘要

治疗性酶是各种生物医学应用中有价值的生物制药。它们已成功应用于纤维蛋白溶解、癌症治疗、酶替代疗法和罕见病治疗。然而,人们一直有需求去寻找新的或更好的治疗性酶,这些酶要有足够的溶解性、稳定性和活性,以满足特定的医疗需求。在这里,我们强调将计算方法与高通量实验技术相结合的好处,这能显著加速催化治疗剂的鉴定和工程改造。新的酶可以在基因组和宏基因组数据库中被识别,由于下一代测序技术,这些数据库正呈指数级增长。人们正在开发计算设计和机器学习方法,以改进具有强大催化能力的酶,并预测它们的特性,从而指导目标酶的选择。越来越依赖微流控技术的高通量实验流程,确保对目标酶进行功能筛选和生化表征,以获得高效的治疗性酶。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验