Suppr超能文献

展示一种系统方法,用于整合不同的数据流,为儿童环境健康决策提供信息。

Demonstrating a systems approach for integrating disparate data streams to inform decisions on children's environmental health.

作者信息

Hubal Elaine A Cohen, DeLuca Nicole M, Mullikin Ashley, Slover Rachel, Little John C, Reif David M

机构信息

Center for Public Health and Environmental Assessment, US EPA, Research Triangle Park, NC, USA.

Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA.

出版信息

BMC Public Health. 2022 Feb 15;22(1):313. doi: 10.1186/s12889-022-12682-3.

Abstract

BACKGROUND

The use of systems science methodologies to understand complex environmental and human health relationships is increasing. Requirements for advanced datasets, models, and expertise limit current application of these approaches by many environmental and public health practitioners.

METHODS

A conceptual system-of-systems model was applied for children in North Carolina counties that includes example indicators of children's physical environment (home age, Brownfield sites, Superfund sites), social environment (caregiver's income, education, insurance), and health (low birthweight, asthma, blood lead levels). The web-based Toxicological Prioritization Index (ToxPi) tool was used to normalize the data, rank the resulting vulnerability index, and visualize impacts from each indicator in a county. Hierarchical clustering was used to sort the 100 North Carolina counties into groups based on similar ToxPi model results. The ToxPi charts for each county were also superimposed over a map of percentage county population under age 5 to visualize spatial distribution of vulnerability clusters across the state.

RESULTS

Data driven clustering for this systems model suggests 5 groups of counties. One group includes 6 counties with the highest vulnerability scores showing strong influences from all three categories of indicators (social environment, physical environment, and health). A second group contains 15 counties with high vulnerability scores driven by strong influences from home age in the physical environment and poverty in the social environment. A third group is driven by data on Superfund sites in the physical environment.

CONCLUSIONS

This analysis demonstrated how systems science principles can be used to synthesize holistic insights for decision making using publicly available data and computational tools, focusing on a children's environmental health example. Where more traditional reductionist approaches can elucidate individual relationships between environmental variables and health, the study of collective, system-wide interactions can enable insights into the factors that contribute to regional vulnerabilities and interventions that better address complex real-world conditions.

摘要

背景

运用系统科学方法来理解复杂的环境与人类健康关系的情况日益增多。先进数据集、模型及专业知识的要求限制了许多环境与公共卫生从业者目前对这些方法的应用。

方法

为北卡罗来纳州各县的儿童应用了一个概念性的系统-of-系统模型,该模型包括儿童身体环境(房屋年代、棕地场地、超级基金场地)、社会环境(照料者收入、教育程度、保险)和健康状况(低出生体重、哮喘、血铅水平)的示例指标。基于网络的毒理学优先排序指数(ToxPi)工具用于对数据进行标准化处理、对得出的脆弱性指数进行排名,并直观显示各县每个指标的影响。层次聚类用于根据相似的ToxPi模型结果将北卡罗来纳州的100个县分为不同组。各县的ToxPi图表还叠加在5岁以下县人口百分比地图上,以直观显示全州脆弱性集群的空间分布。

结果

该系统模型的数据驱动聚类表明有5组县。一组包括6个脆弱性得分最高的县,显示出来自所有三类指标(社会环境、身体环境和健康)的强烈影响。第二组包含15个脆弱性得分高的县,其受到身体环境中房屋年代和社会环境中贫困的强烈影响。第三组由身体环境中超级基金场地的数据驱动。

结论

本分析展示了如何运用系统科学原理,利用公开可用数据和计算工具,为决策综合得出全面见解,以儿童环境健康为例。虽然更传统的还原论方法能够阐明环境变量与健康之间的个体关系,但对集体的、全系统相互作用的研究能够洞察导致区域脆弱性的因素以及能更好应对复杂现实情况的干预措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13d5/8845296/7257d9ad48f4/12889_2022_12682_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验