Suppr超能文献

17种呼吸道病原体之间的相互作用:一项使用临床和社区监测数据的横断面研究

Interactions among 17 respiratory pathogens: a cross-sectional study using clinical and community surveillance data.

作者信息

Burstein Roy, Althouse Benjamin M, Adler Amanda, Akullian Adam, Brandstetter Elizabeth, Cho Shari, Emanuels Anne, Fay Kairsten, Gamboa Luis, Han Peter, Huden Kristen, Ilcisin Misja, Izzo Mandy, Jackson Michael L, Kim Ashley E, Kimball Louise, Lacombe Kirsten, Lee Jover, Logue Jennifer K, Rogers Julia, Chung Erin, Sibley Thomas R, Van Raay Katrina, Wenger Edward, Wolf Caitlin R, Boeckh Michael, Chu Helen, Duchin Jeff, Rieder Mark, Shendure Jay, Starita Lea M, Viboud Cecile, Bedford Trevor, Englund Janet A, Famulare Michael

机构信息

Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle WA USA.

Department of Biology, New Mexico State University, Las Cruces, NM.

出版信息

medRxiv. 2022 Feb 6:2022.02.04.22270474. doi: 10.1101/2022.02.04.22270474.

Abstract

BACKGROUND

Co-circulating respiratory pathogens can interfere with or promote each other, leading to important effects on disease epidemiology. Estimating the magnitude of pathogen-pathogen interactions from clinical specimens is challenging because sampling from symptomatic individuals can create biased estimates.

METHODS

We conducted an observational, cross-sectional study using samples collected by the Seattle Flu Study between 11 November 2018 and 20 August 2021. Samples that tested positive via RT-qPCR for at least one of 17 potential respiratory pathogens were included in this study. Semi-quantitative cycle threshold (Ct) values were used to measure pathogen load. Differences in pathogen load between monoinfected and coinfected samples were assessed using linear regression adjusting for age, season, and recruitment channel.

RESULTS

21,686 samples were positive for at least one potential pathogen. Most prevalent were rhinovirus (33·5%), (, 29·0%), SARS-CoV-2 (13.8%) and influenza A/H1N1 (9·6%). 140 potential pathogen pairs were included for analysis, and 56 (40%) pairs yielded significant Ct differences (p < 0.01) between monoinfected and co-infected samples. We observed no virus-virus pairs showing evidence of significant facilitating interactions, and found significant viral load decrease among 37 of 108 (34%) assessed pairs. Samples positive with and a virus were consistently associated with increased load.

CONCLUSIONS

Viral load data can be used to overcome sampling bias in studies of pathogen-pathogen interactions. When applied to respiratory pathogens, we found evidence of viral- facilitation and several examples of viral-viral interference. Multipathogen surveillance is a cost-efficient data collection approach, with added clinical and epidemiological informational value over single-pathogen testing, but requires careful analysis to mitigate selection bias.

摘要

背景

共同传播的呼吸道病原体可相互干扰或促进,对疾病流行病学产生重要影响。从临床标本中估计病原体与病原体之间相互作用的程度具有挑战性,因为对有症状个体进行采样可能会产生有偏差的估计。

方法

我们进行了一项观察性横断面研究,使用西雅图流感研究在2018年11月11日至2021年8月20日期间收集的样本。通过RT-qPCR检测至少17种潜在呼吸道病原体中的一种呈阳性的样本纳入本研究。使用半定量循环阈值(Ct)值来测量病原体载量。采用线性回归分析,对年龄、季节和招募渠道进行校正,评估单感染和共感染样本之间病原体载量的差异。

结果

21686份样本至少对一种潜在病原体呈阳性。最常见的是鼻病毒(33.5%)、[此处原文缺失一种病原体名称](29.0%)、SARS-CoV-2(13.8%)和甲型H1N1流感(9.6%)。纳入分析140对潜在病原体,其中56对(40%)在单感染和共感染样本之间产生了显著的Ct差异(p<0.01)。我们未观察到病毒-病毒对之间存在显著促进相互作用的证据,并且在108对评估对中的37对(34%)中发现病毒载量显著降低。同时感染[此处原文缺失一种病原体名称]和另一种病毒的样本与[此处原文缺失一种病原体名称]载量增加始终相关。

结论

病毒载量数据可用于克服病原体与病原体相互作用研究中的采样偏差。应用于呼吸道病原体时,我们发现了病毒促进作用的证据以及一些病毒-病毒干扰的例子。多病原体监测是一种具有成本效益的数据收集方法,与单病原体检测相比,具有额外的临床和流行病学信息价值,但需要仔细分析以减轻选择偏差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f64/8845514/0a4489fac1f5/nihpp-2022.02.04.22270474v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验