Suppr超能文献

胸腰椎骨折术后30天内再入院的预测因素:一种混合研究方法。

Predictors of hospital readmission within 30 days after surgery for thoracolumbar fractures: A mixed approach.

作者信息

Nunes Altacílio Aparecido, Pinheiro Rômulo Pedroza, Costa Herton Rodrigo Tavares, Defino Helton Luiz Aparecido

机构信息

Department of Social Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.

Department of Orthopedics and Anesthesiology, Hospital das Clínicas at Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.

出版信息

Int J Health Plann Manage. 2022 May;37(3):1708-1721. doi: 10.1002/hpm.3437. Epub 2022 Feb 15.

Abstract

BACKGROUND

Readmission followed by surgery to treat spinal fractures has a substantial impact on patient care costs and reflects a hospital's quality standards. This article analyzes the factors associated with hospital readmission followed by surgery to treat spinal fractures.

METHODS

This was a cross-sectional study with time-series analysis. For prediction analysis, we used Cox proportional hazards and machine-learning models, using data from the Healthcare Cost and Utilization Project, Inpatient Database from Florida (USA).

RESULTS

The sample comprised 215,999 patients, 8.8% of whom were readmitted within 30 days. The factors associated with a risk of readmission were male sex (1.1 [95% confidence interval 1.06-1.13]) and >60 years of age (1.74 [95% CI: 1.69-1.8]). Surgeons with a higher annual patient volume presented a lower risk of readmission (0.61 [95% CI: 0.59-0.63]) and hospitals with an annual volume >393 presented a lower risk (0.92 [95% CI: 0.89-0.95]).

CONCLUSION

Surgical procedures and other selected predictors and machine-learning models can be used to reduce 30-day readmissions after spinal surgery. Identification of patients at higher risk for readmission and complications is the first step to reducing unplanned readmissions.

摘要

背景

脊柱骨折手术后再入院对患者护理成本有重大影响,并反映了医院的质量标准。本文分析了脊柱骨折手术后再入院相关的因素。

方法

这是一项采用时间序列分析的横断面研究。为进行预测分析,我们使用了Cox比例风险模型和机器学习模型,数据来自美国佛罗里达州医疗成本与利用项目住院数据库。

结果

样本包括215,999名患者,其中8.8%在30天内再次入院。与再入院风险相关的因素包括男性(1.1[95%置信区间1.06 - 1.13])和年龄>60岁(1.74[95%CI:1.69 - 1.8])。每年手术患者量较高的外科医生再入院风险较低(0.61[95%CI:0.59 - 0.63]),每年手术量>393例的医院再入院风险较低(0.92[95%CI:0.89 - 0.95])。

结论

手术操作及其他选定的预测因素和机器学习模型可用于降低脊柱手术后30天内的再入院率。识别再入院和并发症风险较高的患者是减少计划外再入院的第一步。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验