ICGM, Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France.
Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, Hub de l'Energie, 80039 Amiens, France.
J Chem Theory Comput. 2022 Mar 8;18(3):1883-1893. doi: 10.1021/acs.jctc.1c01237. Epub 2022 Feb 16.
Computational studies of electrochemical interfaces based on density-functional theory (DFT) play an increasingly important role in the present research on electrochemical processes for energy conversion and storage. The homogeneous background method (HBM) offers a straightforward approach to charge the electrochemical system within DFT simulations, but it typically requires the specification of the active fraction of excess electrons based on a certain choice of the electrode-electrolyte boundary location, which can be difficult in the presence of electrode-surface adsorbates or explicit solvent molecules. In this work, we present a methodological advancement of the HBM, both facilitating and extending its applicability. The advanced version requires neither energy corrections nor the specification of the active fraction of excess electrons, providing a versatile and readily available method for the simulation of charged interfaces when adsorbates or explicit solvent molecules are present. Our computational DFT results for Pt(111), Au(111), and Li(100) metal electrodes in high-dielectric-constant solvents demonstrate an excellent agreement in the interfacial charging characteristics obtained from simulations with the advanced HBM in comparison with the (linearized) Poisson-Boltzmann model (PBM).
基于密度泛函理论(DFT)的电化学界面计算研究在当前的能量转换和存储电化学过程研究中发挥着越来越重要的作用。均匀背景方法(HBM)为在 DFT 模拟中对电化学系统充电提供了一种直接的方法,但它通常需要根据电极-电解质边界位置的特定选择来指定过量电子的活性分数,而在存在电极表面吸附物或明确溶剂分子的情况下,这可能很困难。在这项工作中,我们提出了 HBM 的方法学改进,既方便又扩展了其适用性。高级版本既不需要能量修正,也不需要指定过量电子的活性分数,为存在吸附物或明确溶剂分子时的带电界面模拟提供了一种通用且易于使用的方法。我们对高介电常数溶剂中 Pt(111)、Au(111)和 Li(100)金属电极的计算 DFT 结果表明,与(线性化)泊松-玻尔兹曼模型(PBM)相比,从高级 HBM 模拟中获得的界面充电特性具有极好的一致性。