Binninger Tobias, Doublet Marie-Liesse
ICGM, Univ Montpellier, CNRS, ENSCM Montpellier France
Energy Environ Sci. 2022 May 4;15(6):2519-2528. doi: 10.1039/d2ee00158f. eCollection 2022 Jun 15.
Carefully assessing the energetics along the pathway of the oxygen evolution reaction (OER), our computational study reveals that the "classical" OER mechanism on the (110) surface of iridium dioxide (IrO) must be reconsidered. We find that the OER follows a bi-nuclear mechanism with adjacent top surface oxygen atoms as fixed adsorption sites, whereas the iridium atoms underneath play an indirect role and maintain their saturated 6-fold oxygen coordination at all stages of the reaction. The oxygen molecule is formed, an Ir-OOOO-Ir transition state, by association of the outer oxygen atoms of two adjacent Ir-OO surface entities, leaving two intact Ir-O entities at the surface behind. This is drastically different from the commonly considered mono-nuclear mechanism where the O molecule evolves by splitting of the Ir-O bond in an Ir-OO entity. We regard the rather weak reducibility of crystalline IrO as the reason for favoring the novel pathway, which allows the Ir-O bonds to remain stable and explains the outstanding stability of IrO under OER conditions. The establishment of surface oxygen atoms as fixed electrocatalytically active sites on a transition-metal oxide represents a paradigm shift for the understanding of water oxidation electrocatalysis, and it reconciles the theoretical understanding of the OER mechanism on iridium oxide with recently reported experimental results from operando X-ray spectroscopy. The novel mechanism provides an efficient OER pathway on a weakly reducible oxide, defining a new strategy towards the design of advanced OER catalysts with combined activity and stability.
通过仔细评估析氧反应(OER)路径上的能量学,我们的计算研究表明,二氧化铱(IrO)(110)表面上的“经典”OER机制必须重新考虑。我们发现,OER遵循一种双核机制,相邻的顶表面氧原子作为固定吸附位点,而其下方的铱原子起间接作用,并在反应的所有阶段保持其饱和的六重氧配位。氧分子通过两个相邻的Ir-OO表面实体的外部氧原子结合形成一个Ir-OOOO-Ir过渡态,在表面留下两个完整的Ir-O实体。这与通常认为的单核机制截然不同,在单核机制中,O分子通过Ir-OO实体中的Ir-O键断裂而形成。我们认为晶体IrO相当弱的还原性是有利于这种新路径的原因,这使得Ir-O键保持稳定,并解释了IrO在OER条件下的出色稳定性。在过渡金属氧化物上建立表面氧原子作为固定的电催化活性位点代表了对水氧化电催化理解的范式转变,并且它使氧化铱上OER机制的理论理解与最近报道的原位X射线光谱实验结果相协调。这种新机制在弱还原性氧化物上提供了一条有效的OER路径,为设计具有活性和稳定性相结合的先进OER催化剂定义了一种新策略。