Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States.
ACS Appl Mater Interfaces. 2022 Mar 2;14(8):10125-10133. doi: 10.1021/acsami.1c23682. Epub 2022 Feb 16.
Metal processing using microorganisms has many advantages including the potential for reduced environmental impacts as compared to conventional technologies.is an iron- and sulfur-oxidizing chemolithoautotroph that is known to participate in metal bioleaching, and its metabolic capabilities have been exploited for industrial-scale copper and gold biomining. In addition to bioleaching, microorganisms could also be engineered for selective metal binding, enabling new opportunities for metal bioseparation and recovery. Here, we explored the ability of polyhistidine (polyHis) tags appended to two recombinantly expressed endogenous proteins to enhance the metal binding capacity of . The genetically engineered cells achieved enhanced cobalt and copper binding capacities, and the Langmuir isotherm captures their interaction behavior with these divalent metals. Additionally, the cellular localization of the recombinant proteins correlated with kinetic modeling of the binding interactions, where the outer membrane-associated polyHis-tagged licanantase peptide bound the metals faster than the periplasmically expressed polyHis-tagged rusticyanin protein. The selectivity of the polyHis sequences for cobalt over copper from mixed metal solutions suggests potential utility in practical applications, and further engineering could be used to create metal-selective bioleaching microorganisms.
利用微生物进行金属加工具有许多优点,包括与传统技术相比,潜在的环境影响降低。是一种铁和硫氧化的化能自养生物,已知它参与金属生物浸出,其代谢能力已被用于工业规模的铜和金的生物采矿。除了生物浸出,微生物也可以被设计用于选择性金属结合,为金属的生物分离和回收提供新的机会。在这里,我们探索了连接到两个重组表达的内源性蛋白上的聚组氨酸 (polyHis) 标签增强的金属结合能力。遗传工程细胞实现了增强的钴和铜结合能力,并且 Langmuir 等温线捕获了它们与这些二价金属的相互作用行为。此外,重组蛋白的细胞定位与结合相互作用的动力学建模相关,其中与外膜相关的聚组氨酸标记的 lichenase 肽比在周质表达的聚组氨酸标记的 rusticyanin 蛋白更快地结合金属。聚组氨酸序列对混合金属溶液中钴的选择性高于铜表明在实际应用中具有潜在的用途,并且可以进一步进行工程设计以创建金属选择性生物浸出微生物。